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Preface

This book surveys algorithms and techniques of crowd simulation, and is in-
tended for graduate students, researchers, and professionals. In particular,
computer animation researchers, developers, designers, and urban planners
will greatly benefit from this book.

In 1996, when the authors started researching into crowd simulation, there
was very little material available on crowd simulation in the Computer Sci-
ence literature. Daniel Thalmann supervised Soraia Raupp Musse PhD thesis
in 1997 and since then they have jointly published more than 40 papers in
the domain. There has since been significant research in this area and many
techniques have been developed, with the entertainment industry in particular
realising the potential of crowd animation. As a result, many other research
groups have also started working in the area. As early pioneers in this research,
the authors organized the first workshop on Crowd Simulation (V-Crowds) in
2005 in Lausanne. But why is this subject so fascinating?

Aggregated motion is both beautiful and complex to contemplate. Beautiful
due to the synchronisation, homogeneity and unity described in this type of
motion, and complex because there are many parameters to be handled in
order to provide these characteristics. History shows that there has always
been interest in understanding and controlling the motion and behaviour of
crowds of people. Psychologists and sociologists have studied the behaviours
of groups of people for several years, primarily to study the effects that occur
when people with the same goal become one entity – a crowd or a mass. When
this happens, people can lose their individuality and adopt the behaviour of
the crowd entity, behaving in a different way than if they were alone.

Certain problems arise only when studying crowds. For instance, collision
avoidance problems related to a large number of individuals in the same place
require different strategies in comparison with the methods used to avoid
collision between individuals. Also, motion planning used in a group that walks
together requires more information than that needed to implement individual
motion planning. The trajectories computed for agents who are part of the
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same group and walk together with similar speeds have to be different even
when they share the same environment and goals.

Moreover, a crowd is not only a large group of individuals, but can also be
formed by groups which in turn are related to individuals. In addition other
levels of behaviour can exist when treating crowds in this hierarchical struc-
ture. The group behaviours can be used to specify the way a group moves,
behaves and acts in order to fit different group structures (flocking, following,
repulsion, attraction, etc). Individual abilities can also be required in order
to improve the autonomy and intelligence of crowds, for instance perception,
emotional status, memory, communication, etc. However, when we consider
thousands of individuals, these complex behaviours cannot be provided indi-
vidually due to the hardware constraints and to computational time rates. A
further problem relates to how to improve the intelligence and provide auton-
omy to scalable crowds, in real-time systems.

The simulation of large crowds in real time requires many instances of
similar characters. We need algorithms to allow for each individual in the
crowd to be unique. In this book we explain two methods: first, a simple
and efficient way of attaching accessories to individuals in order to modify
their look; and secondly, a new and generic technique based on segmentation
maps to add detailed color variety and patterns to human meshes as well as
to accessories. Both methods are scalable to suit all human levels of detail
exploited in crowd simulations.

Depending on the application of crowds, other requirements may be
needed. For instance real time simulations can be required in order to pop-
ulate virtual environments in virtual reality systems. In order to provide a
tool to simulate behavioural aspects of a crowd, social conventions of inter-
relationships are needed. Yet, accurate validations should be provided to sim-
ulate safety systems.

Some crowd requirements along with strategies and techniques that can
be adopted to deal with these, are described in this book. Some of the top-
ics presented are related to population modelling, virtual human animation,
computer vision techniques focusing on crowd control and crowd rendering,
and some applications are analysed.
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1

Introduction

Although collective behavior has been studied since as early as the end of the
nineteenth century [LeB95], attempts to simulate it by computer models are
quite recent, with most of the works done only in the mid and late nineties. In
the past two decades researchers from a broad range of fields such as architec-
ture [SOHTG99,PT01,TP02], computer graphics [Rey87,HB94,BG96,MT01,
TLC02b, UT02, BMB03], physics [HM95, HFV00, FHV02], robotics [MS01],
safety science [TM95a,Sti00,Sim04], training systems [Bot95,Wil95,VSMA98],
and sociology [MPT92, TSM99, JPvdS01] have been creating simulations
involving collections of individuals. Nevertheless, despite the apparent breadth
of the crowd simulation research basis, interdisciplinary exchange of ideas is
rare; researchers in one field are usually not very aware of works done in other
fields.

Most approaches were application-specific, focusing on different aspects of
the collective behavior, using different modeling techniques. Employed tech-
niques range from those that do not distinguish individuals such as flow and
network models in some of the evacuation simulations [TS92], to those that
represent each individual as being controlled by more or less complex rules
based on physical laws [HIK96,HFV00], chaos equations [SKN98], behavioral
models in training systems [Wil95], or sociological simulations [JPvdS01].

We can distinguish two broader areas of crowd simulations. The first one
is focusing on a realism of behavioral aspects with usually simple 2D
visualizations like evacuation simulators, sociological crowd models, or crowd
dynamics models. In this area, a simulated behavior is usually from a very nar-
row, controlled range (for example, people just flying to exit or people forming
ring crowd structures) with efforts to quantitatively validate correspondence
of results to real-world observations of particular situations [TM95b]. Ideally, a
simulation’s results would then be consistent with data sets collected from field
observations or video footage of real crowds either by human observers [SM99]
or by some automated image processing method [MVCL98,CYC99]. Visual-
ization is used to help understand simulation results, but it is not crucial.
In most cases, a schematic representation, with crowd members represented



2 1 Introduction

by colored dots, or sticky figures, is enough, sometimes even preferable as it
allows highlighting important information.

In the second area, a main goal is high-quality visualization (for
example, in movie productions and computer games), but usually the realism
of the behavior model is not the priority. What is important is a convincing
visual result, which is achieved partly by behavior models, partly by human
intervention in the production process. A virtual crowd should both look good
and be animated in a believable manner, the emphasis of the research being
mostly on rendering and animation methods. Crowd members are visualized
as fully animated three-dimensional figures that are textured and lit to fit
into the environment [DHOO05a]. Here, behavior models do not necessarily
aim to match quantitatively the real world; their purpose is more to alleviate
the work of human animators, and to be able to respond to inputs in case of
interactive applications.

Nevertheless, a recent trend seems to be a convergence of both areas,
where visualization-oriented systems are trying to incorporate better behav-
ior models to ease creation of convincing animations and behavior-oriented
models are trying to achieve better visualization, especially in the domain of
evacuation simulators. We can expect that the most demanding applications
would be training systems, where both valid replication of the behaviors and
high-quality visualization are necessary for a training to be effective.

1.1 Requirements and Constraints for Crowd Modeling

Real-time crowds bring different challenges compared with the systems
either involving a small number of interacting characters (for example, the
majority of contemporary computer games), or non-real-time applications (as
crowds in movies, or visualizations of crowd evacuations after off-line model
computations). In comparison with single-agent simulations, the main
conceptual difference is the need for efficient variety management at
every level, whether it is visualization, motion control, animation, or sound
rendering. As everyday experiences hint, virtual humans composing a crowd
should look different, move different, react different, sound different, and so
forth. Even if assuming perfect simulation of a single virtual human would
be possible, creating a simulation involving multiple such humans would still
be a difficult and tedious task. Methods easing control of many characters
are needed; however, such methods should still preserve the ability to control
individual agents.

In comparison with non-real-time simulations, the main technical chal-
lenge is increased demand on computational resources whether it is
general processing power, graphics performance, or memory space. One of the
foremost constraining factors for real-time crowd simulations is crowd render-
ing. Fast and scalable methods both to compute behavior, able to take into
account inputs not known in advance, and to render large and varied crowds,
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are needed. While non-real-time simulations are able to take advantage of
knowing a full run of the simulated scenario (and therefore, for example, can
run iteratively over several possible options selecting the globally best solu-
tion), real-time simulations have to react to the situation as it unfolds in the
moment.

1.2 Crowd Simulation Areas

In order to create a full simulation of the crowd in the virtual environment,
many issues have to be solved. The areas of relevance for crowd simulation
and some associated questions include:

Generation of virtual individuals: How to generate a heterogeneous crowd?
How to create a population with desired distribution of features [GKMT01,
SYCGMT02,BBOM03]? Chapter 3 discusses some of these aspects.

Crowd animation: How should virtual entities move around and avoid col-
lisions with both a static environment and dynamic objects How can a
group move in a coordinated manner? [ALA∗01a,GKM∗01,AMC03,LD04,
BBM05]? Chapter 4 presents some techniques to solve these problems.

Crowd behavior generation: How should a virtual crowd respond to changes
in their surroundings? How should agents respond to behaviors of other
agents? What is an appropriate way of modeling perception for many
agents [Rey87, TT94, HB94, BCN97, BH97, Rey99, Mus00, UT02, NG03]?
Chapter 5 describes some methods used for solving these questions.

Interaction with virtual crowds: How and which information should be ex-
changed from real people to control virtual humans? What is the most
efficient metaphor to direct crowds of virtual extras [FRMS∗99, Ud-
HCT04]? Chapter 6 presents some discussion concerning these aspects.

Virtual crowd rendering: How to display many animated characters, quickly?
How to display a wide variety of appearances [ABT00, LCT01, TLC02a,
WS02, dHSMT05, CM05]? Chapter 7 explains some details concerning
crowd rendering.

Integration of crowds in virtual environments: Which aspects of the environ-
ment need to be modeled? Which representation of environmental
objects is best suited for fast behavior computation [FBT99, BLA02,
KBT03,LMM03,PVM05]? Chapter 8 presents some discussion about these
aspects.

Many of these aspects are to a greater or lesser extent intertwined. For
example, efficiency of rendering constrains the possible variety of behaviors
and appearances; higher-level behavior generation controls lower-level mo-
tion systems, but the behavior should also respond appropriately to collisions
encountered while moving; the behavior model affects interaction possibili-
ties; the environment representation affects possible behaviors; relating real
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and virtual humans allows handling of more complex behavior and environ-
ment representations and so on.

This book aims to discuss some of these aspects, organized in eight
chapters, also including a state-of-the-art and presentation of some relevant
applications developed by the authors.
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State-of-the-Art

One of the largest areas where crowd behaviors have been modeled is the
domain of safety science and architecture with the dominant application
of crowd evacuation simulators. Such systems model movements of a large
number of people in usually closed and well-defined spaces like inner areas
of buildings [TM95a, BBM05], subways [Har00], ships [KMKWS00], or air-
planes [OGLF98]. Their goal is to help designers to understand the relation
between the organization of space and human behavior [OM93].

The most common use of evacuation simulators is the modeling of crowd
behavior in case of forced evacuation from a confined environment due to some
threat like fire or smoke. In such a situation, a number of people have to evac-
uate the given area, usually through a relatively small number of fixed exits.
Simulations are trying to help answer questions like: Can the area be evac-
uated within a prescribed time? Where do the holdups in the flow of people
occur? Where are the likely areas for a crowd surge to produce unacceptable
crushing pressure [Rob99]? The most common modeling approach in this area
is the use of cellular automata serving both as a representation of individuals
and as a representation of the environment.

Simulex [TM95a,TM95b] is a computer model simulating the escape move-
ment of persons through large, geometrically complex building spaces defined
by 2D floor plans and connecting staircases. Each individual has attributes
such as position, body size, angle of orientation, and walking speed. Vari-
ous algorithms as distance mapping, way finding, overtaking, route deviation,
and adjustment of individual speeds due to proximity of crowd members are
used to compute egress simulation, where individual building occupants walk
toward and through the exits.

G. Still developed a collection of programs named Legion for simulation
and analysis of the crowd dynamics in evacuation from constrained and com-
plex environments like stadiums [Sti00]. Dynamics of crowd motion is modeled
by mobile cellular automata. Every person in the crowd is treated as an indi-
vidual, calculating its position by scanning its local environment and choosing
an appropriate action.



6 2 State-of-the-Art

Helbing et al. [HM95,HFV00,WH03] proposed a model based on physics
and sociopsychological forces in order to describe the human crowd behavior in
panic situations. The model is set up by a particle system where each particle
i of mass mi has a predefined speed v0

i , i.e., the desired velocity, in a certain
direction e0

i to which it tends to adapt its instantaneous velocity vi within
a certain time interval τ (for 1st term of Equation 2.1). Simultaneously, the
particles try to keep a velocity-dependent distance from other entities j and
walls w controlled by interaction forces fij and fiw (second and third terms
of Equation 2.1), respectively. The change of velocity with time t is given by
the dynamical equation:

mi
dvi

dt
= F

(H)
i = mi

v0
i e

0
i − vi(t)

τi
+

∑

j �=i

fij +
∑

w

fiw (2.1)

Braun et al. [BMB03,BBM05] extended the Helbing Model (F (H)
i ) in order

to deal with different individuals and group behaviors, and also with complex
environments. In this work, the agents’ population can be composed hetero-
geneously by individuals with different attributes.

2.1 Crowd Management Training Systems

The modeling of crowds has also been essential in police and military simulator
systems used for training in how to deal with mass gatherings of people.

CACTUS [Wil95] is a system developed to assist in planning and training
for public order incidents such as large demonstrations and marches. The
software designs are based on a world model in which crowd groups and
police units are placed on a digitized map and have probabilistic rules for
their interactive behavior. The simulation model represents small groups of
people as discrete objects. The behavioral descriptions are in the form of a
directed graph where the nodes describe behavioral states (to which corre-
spond actions and exhibited emotions) and transitions represent plausible
changes between these states. The transitions depend on environmental con-
ditions and probability weightings. The simulation runs as a decision making
exercise that can include pre-event logistic planning, incident management,
and debriefing evaluation.

Small Unit Leader Non-Lethal Training System [VSMA98] is a simulator
for training U.S. Marines Corps in decision making with respect to the use of
nonlethal munitions in peacekeeping and crowd control operations. Trainees
learn rules of engagement, the procedures for dealing with crowds and mobs,
and the ability to make decisions about the appropriate level of force needed
to control, contain, or disperse crowds and mobs. Crowds move within a sim-
ulated urban environment along instructor-predefined pathways and respond
both to actions of a trainee and to actions of other simulated crowds. Each
crowd is characterized by a crowd profile—series of attributes like fanaticism,
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arousal state, prior experience with nonlethal munitions, or attitude toward
Marines. During an exercise, the crowd behavior computer model operates
in real time and responds to trainee actions (and inactions) with appropriate
simulated behaviors such as loitering, celebrating, demonstrating, rioting, and
dispersing according to a set of Boolean relationships defined by experts.

2.2 Sociological Models of Crowds

Despite being a field primarily interested in studying collective behavior, only
a relatively small number of works on crowd simulations have been done in
sociology.

McPhail et al. [MPT92] studied individual and collective actions in tem-
porary gatherings. Their model of the crowd is based on perception control
theory [Pow73] where each separate individual is trying to control his or
her experience in order to maintain a particular relationship to others: in
this case it is a spatial relationship with others in a group. The simulation
program GATHERING graphically shows movement, milling, and structural
emergence in crowds. The same simulation system was later used by Schwein-
gruber [Sch95] to study the effects of reference signals common to coordination
of collective behavior and by Tucker et al. [TSM99] to study formation of arcs
and rings in temporary gatherings.

Jager et al. [JPvdS01] modeled clustering and fighting in two-party crowds.
A crowd is modeled by a multi agent simulation using cellular automata with
rules defining approach–avoidance conflict. The simulation consists of two
groups of agents of three different kinds: hardcore, hangers-on, and bystanders,
the difference between them consisting in the frequency with which they scan
their surroundings. The goal of the simulation was to study effects of group
size, size symmetry, and group composition on clustering, and “fights”.

2.3 Group Behavior in Robotics and Artificial Life

Researchers working in the field of artificial life are interested in exploring how
group behavior emerges from local behavioral rules [Gil95]. Software models
and groups of robots were designed and experimented with in order to un-
derstand how complex behaviors can arise in systems guided by simple rules.
The main source of inspiration is nature, where, for example, social insects
efficiently solve problems such as finding food, building nests, or division of
labor among nestmates by simple interacting individuals without an over-
seeing global controller. One of the important mechanisms contributing to a
distributed control of the behavior is stigmergy, indirect interactions among
individuals through modifications of the environment [BDT99].

Dorigo introduced ant systems inspired by behaviors of real ant colonies
[Dor92]. Ant algorithms have been successfully used to solve a variety of
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discrete optimization problems including the traveling salesman problem,
sequential ordering, graph coloring, or network routing [BDT00]. Besides in-
sects, groups of more complex organisms such as flocks of birds, herds of
animals, and schools of fish have been studied in order to understand princi-
ples of their organization. Recently, Couzin et al. presented a model of how
animals that forage or travel in groups can make decisions even with a small
number of informed individuals [CKFL05].

Principles from biological systems were also used to design behavior con-
trollers for autonomous groups of robots. Mataric studied behavior-based con-
trol for a group of robots, experimenting with a herd of 20 robots whose
behavioral repertoire included safe wandering, following, aggregation, disper-
sion, and homing [Mat97]. Molnar and Starke have been working on assign-
ment of robotic units to targets in a manufacturing environment using a
pattern formation inspired by pedestrian behavior [MS01]. Martinoli applied
swarm intelligence principles to autonomous collective robotics, performing
experiments with robots that were gathering scattered objects and cooperat-
ing to pull sticks out of the ground [Mar99]. Holland and Melhuish experi-
mented with a group of robots doing sorting of objects based on ant behaviors
where ants sort larvae and cocoons [HM99]. In an interesting work using a
robot to control animal behavior, Vaughan et al. developed a mobile robot
that gathers a flock of real ducks and maneuvers them safely to a specified
goal position [VSH∗00].

2.4 Crowds in Virtual Worlds

In order to have a persuasive application using crowds in virtual environments,
various aspects of the simulation have to be addressed, including behavioral
animation, environment modeling, and crowd rendering. If there is no satis-
factory rendering, even the best behavior model will not be very convincing. If
there is no good model of a behavior, even a simulation using the best render-
ing method will look dumb after only a few seconds. If there is no appropriate
model of the environment, characters will not behave believably, as they will
perform actions in the wrong places, or not perform at all.

The goal of behavioral animation is to ease the work of designers by
letting virtual characters perform autonomously or semiautonomously com-
plicated motions which otherwise would require large amounts of human an-
imators’ work; or, in case of interactive applications, the behavioral models
allow characters to respond to user initiated actions.

In order for a behavior to make sense, besides characters, their surrounding
environment has to be modeled, not just graphically but also semantically.
Indeed, a repertoire of possible behaviors is very dependent on what is and
what is not included in a model of the environment. It happens very often
that the environment is visually rich, but the interaction of characters with it
is minimal.
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Finally, for interactive applications, it is necessary to display a varied
ensemble of virtual characters in an efficient manner. Rendered characters
should visually “fit” into the environment—they should be affected by light
and other effects in the same manner as their surroundings.

Next, we will present representative works for each of these topics grouped
according to their main focus.

2.5 Behavioral Animation of Groups and Crowds

Human beings are arguably the most complex known creatures, therefore they
are also the most complex creatures to simulate. A behavioral animation of
human (and humanoid) crowds is based on foundations of group simulations of
much more simple entities, notably flocks of birds [Rey87,GA90] and schools
of fish [TT94]. The first procedural animation of flocks of virtual birds was
shown in the movie by Amkraut, Girard, and Karl called Eurhythmy, for
which the first concept [AGK85] was presented at The Electronic Theater at
SIGGRAPH in 1985 (final version was presented at Ars Electronica in 1989).
The flock motion was achieved by a global vector force field guiding a flow of
flocks [GA90].

In his pioneering work, Reynolds [Rey87] described a distributed behav-
ioral model for simulating aggregate motion of a flock of birds. The technical
paper was accompanied by an animated short movie called “Stanley and Stella
in: Breaking the Ice” shown at the Electronic Theater at SIGGRAPH ’87. The
revolutionary idea was that a complex behavior of a group of actors can be
obtained by simple local rules for members of the group instead of some
enforced global condition. The flock is simulated as a complex particle sys-
tem, with the simulated birds (called boids) being the particles. Each boid
is implemented as an independent agent that navigates according to its local
perception of the environment, the laws of simulated physics, and the set of
behaviors. The boids try to avoid collisions with one another and with other
objects in their environment, match velocities with nearby flock mates, and
move toward a center of the flock. The aggregate motion of the simulated
flock is the result of the interaction of these relatively simple behaviors of
the individual simulated birds. Reynolds later extended his work by including
various steering behaviors as goal seeking, obstacle avoidance, path following,
or fleeing [Rey99], and introduced a simple finite-state machines behavior con-
troller and spatial queries optimizations for real-time interaction with groups
of characters [Rey00].

Tu and Terzopoulos proposed a framework for animation of artificial
fishes [TT94]. Besides complex individual behaviors based on perception of
the environment, virtual fishes have been exhibiting unscripted collective
motions as schooling and predator evading behaviors analogous to flocking
of boids.
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An approach similar to boids was used by Bouvier et al. [BG96,BCN97]
to simulate human crowds. They used a combination of particle systems and
transition networks to model crowds for the visualization of urban spaces. At
the lower level, attractive and repulsive forces, analogous to physical electric
ones, enable people to move around the environment. Goals generate attrac-
tive forces, obstacles generate repulsive force fields. Higher level behavior is
modeled by transition networks with transitions depending on time, visiting
of certain points, changes of local population densities, and global events.

Brogan and Hodgins [HB94,BH97] simulated group behaviors for systems
with significant dynamics. Compared to boids, a more realistic motion is
achieved by taking into account physical properties of motion, such as momen-
tum or balance. Their algorithm for controlling the movements of creatures
proceeds in two steps: first, a perception model determines the creatures and
obstacles visible to each individual, and then a placement algorithm deter-
mines the desired position for each individual given the locations and veloci-
ties of perceived creatures and obstacles. Simulated systems included groups
of one-legged robots, bicycle riders, and point-mass systems.

Musse and Thalmann [Mus00, MT01] presented a hierarchical model
for real-time simulation of virtual human crowds. Their model is based on
groups, instead of individuals: groups’ are more intelligent structures, where
individuals follow the groups specification. Groups can be controlled with dif-
ferent levels of autonomy: guided crowds follow orders (as go to a certain place
or play a particular animation) given by the user in run-time; programmed
crowds follow a scripted behavior; and autonomous crowds use events and re-
actions to create more complex behaviors. The environment comprises a set of
interest points, which signify goals and way points; and a set of action points,
which are goals that have some actions associated. Agents move between way
points following Bezier curves.

Recently, another work was exploring group modeling based on hierarchies.
Niederberger and Gross [NG03] proposed an architecture of hierarchical and
heterogeneous agents for real-time applications. Behaviors are defined through
specialization of existing behavior types and weighted multiple inheritance
for creation of new types. Groups are defined through recursive and modulo
based patterns. The behavior engine allows for the specification of a maximal
amount of time per run in order to guarantee a minimal and constant frame
rate.

Ulicny and Thalmann [UT01, UT02] presented a crowd behavior simula-
tion with a modular architecture for multiagent system allowing autonomous
and scripted behavior of agents supporting variety. In their system, the be-
havior is computed in layers, where decisions are made by behavioral rules
and execution is handled by hierarchical finite-state machines.

Most recently, a real-time crowd model based on continuum dynamics
has been proposed by [TCP06b]. In their model, a dynamic potential field
integrates global navigation with moving obstacles, efficiently solving for the
motion of large crowds without the need for explicit collision avoidance.
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Perceived complexity of the crowd simulation can be increased by using
levels of detail (LOD). O’Sullivan et al. [OCV∗02] described a simulation of
crowds and groups with level of details for geometry, motion, and behavior.
At the geometrical level, subdivision techniques are used to achieve smooth
rendering LOD changes. At the motion level, the movements are simulated
using adaptive levels of detail. Animation subsystems with different complex-
ities, as a keyframe player or a real-time reaching module, are activated and
deactivated based on heuristics. For the behavior, LOD is employed to reduce
the computational costs of updating the behavior of characters that are less
important. More complex characters behave according to their motivations
and roles, less complex ones just play random keyframes.

2.6 Environment Modeling for Crowds

Environment modeling is closely related to behavioral animation. The pur-
pose of the models of the environment is to facilitate simulation of entities
dwelling in their surrounding environments. Believability of virtual creatures
can be greatly enhanced if they behave in accordance with their surroundings.
On the contrary, the suspense of disbelief can be immediately destroyed if they
perform something not expected or not permitted in the real world, such as
passing through the wall or walking on water. The greatest efforts have there-
fore been directed to representations and algorithms preventing “forbidden”
behaviors from occuring; until quite recently the two major artificial intelli-
gence issues concerning game development industry were collision avoidance
and path-planning [Woo99,DeL00].

The majority of the population in the developed world lives in cities; it
is there that most human activities take place nowadays. Accordingly, most
of the research has been done for modeling of virtual cities. Farenc et
al. [FBT99] introduced an informed environment dedicated to the simu-
lation of virtual humans in the urban context. The informed environment is
a database integrating semantic and geometrical information about a virtual
city. It is based on a hierarchical decomposition of an urban scene into envi-
ronment entities, like quarters, blocks, junctions, streets, and so on. Entities
can contain a description of the behaviors that are appropriate for agents lo-
cated on them; for example, a sidewalk tells that it should be walked on, or a
bench tells that it should be sat on. Furthermore, the environment database
can be used for a path-finding that is customized according to the type of
client requesting the path, so that, for example, a pedestrian will get paths
using sidewalks, but a car will get paths going through roads.

Another model of a virtual city for a behavioral animation was presented
by Thomas and Donikian [TD00]. Their model is designed with the main
emphasis on traffic simulation of vehicles and pedestrians. The environment
database is split into two parts— a hierarchical structure containing a tree
of polygonal regions, similar to the informed environment database; and a
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topological structure with a graph of a road network. Regions contain in-
formation on directions of circulation, including possible route changes at
intersections. The agents then use the database to navigate through the city.

In a recent work, Sung et al. [SGC04] presented a new approach to control
the behavior of a crowd by storing behavioral information into the environ-
ment using structures called situations. Compared with previous approaches,
environmental structures (situations) can overlap; behaviors corresponding to
such overlapping situations are then composed using probability distributions.
Behavior functions define probabilities of state transitions (triggering motion
clips) depending on the state of the environment features or on the past state
of the agent.

On the side focused on more generic path-planning issues, several works
have been done. Kallmann et al. [KBT03] proposed a fast path-planning algo-
rithm based on a fully dynamic constrained Delaunay triangulation. Bayazit
et al. [BLA02] used global roadmaps to improve group behaviors in geomet-
rically complex environments. Groups of creatures exhibited behaviors such
as homing, goal searching, covering, or shepherding, by using rules embedded
both in individual flock members and in roadmaps. Tang et al. [TWP03] used
a modified A* algorithm working on a grid overlaid over a height-map gener-
ated terrain. Recently, Lamarche and Donikian [LD04] presented a topological
structure of the geometric environment for a fast hierarchical path-planning
and a reactive navigation algorithm for virtual crowds. Most recently, work
presented by Pettré et al. [PLT05] shows how to automatically and robustly
compute a multilevel navigation graph using three-dimensional cylinders. This
work also shows how to reuse the resulting path-planning computation for a
few hundred agents that can react to congestion along the path.

2.7 Crowd Rendering

Real-time rendering of a large number of 3D characters is a considerable chal-
lenge; it is able to exhaust system resources quickly even for state-of-the-
art systems with extensive memory resources, fast processors, and powerful
graphic cards. “Brute-force” approaches that are feasible for a few characters
do not scale up for hundreds, thousands, or more of them. Several works have
been trying to circumvent such limitations by clever use of graphics acceler-
ator capabilities, and by employing methods profiting from the fact that our
perception of the scene as a whole is limited.

We can perceive in full detail only a relatively small part of a large col-
lection of characters. A simple calculation shows that to treat every crowd
member as equal is rather wasteful. Modern screens can display around 2
million pixels at the same time, where a fairly complex character can contain
approximately 10,000 triangles. Even if assuming that every triangle were be
projected to a single pixel, and that there would be no overlap of characters,
the screen fully covered by a crowd would contain only around 200 simulta-
neously visible characters. Of course, in reality the number would be much
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smaller; a more reasonable estimate is around a few dozen fully visible char-
acters, with the rest of the crowd either being hidden behind these prominent
characters or taking significantly less screen space. Therefore, it makes sense
to take full care only of the foremost agents, and to replace the others with
some less complex approximations. Level of details techniques then switch
visualizations according to position and orientation of the observer. In the
recent work of Hamill et al. [HMDO05] they pursue psychophysics, a disci-
pline to decide perceptual limitations to the human vision system for example.
Doing tests on how motion affects the perception of a human represented by
an impostor or by a geometric structure, they were able to define distances of
least noticeable switching between models.

Billboarded impostors are one of the methods used to speed up crowd
rendering. Impostors are partially transparent textured polygons that contain
a snapshot of a full 3D character and are always facing the camera. Aubel et
al. [ABT00] introduced dynamically generated impostors to render animated
virtual humans. In their approach, an impostor creating process is running in
parallel to full 3D simulations, taking snapshots of rendered 3D characters.
These cached snapshots are then used over several frames instead of the full
geometry until a sufficient movement of either camera or a character will
trigger another snapshot, refreshing the impostor texture.

In another major work using impostors, Tecchia et al. [TLC02a] proposed
a method for real-time rendering of an animated crowd in a virtual city.
Compared with the previous method, impostors are not computed dynam-
ically, but are created in a preprocessing step. Snapshots are sampled from
viewpoints distributed in the sphere around the character. This process is
repeated for every frame of the animation. In run-time, images taken from
viewpoints closest to the actual camera position are then used for texturing
of the billboard. Additionally, the silhouettes of the impostors are used as
shadows projected to a ground surface. Multitexturing is used to add variety
by modulating colors of the impostors. In a later work they added lighting
using normal maps [TLC02b]. Their method using precomputed impostors is
faster than dynamical impostors, but it is very demanding on texture mem-
ory, which leads to lower image quality as size of textures per character and
per animation frame have to be kept small.

A different possibility for a fast crowd display is to use point-based ren-
dering techniques. Wand and Strasser [WS02] presented a multiresolution
rendering approach which unifies image based and polygonal rendering. They
create a view-dependent octree representation of every keyframe of anima-
tion, where nodes store either a polygon or a point. These representations are
also able to interpolate linearly from one tree to another so that in-between
frames can be calculated. When the viewer is at a long distance, the human is
rendered using point rendering; when zoomed in, using polygonal techniques;
and when in between, a mix of the two.

An approach that has been getting new life is that of geometry bak-
ing. By taking snapshots of vertex positions and normals, complete mesh
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descriptions are stored for each frame of animation as in the work of Ulicny
et al. [UdHCT04]. Since current desktop PCs have large memories, many
such frames can be stored and replayed. A hybrid approach of both baked
geometry and billboarding was presented at I3d, where only a few actors
are fully geometrical while the vast number of actors are made up of bill-
boards [DHOO05a]. A similar approach can be found in [CLM05]. A more
recent approach to crowd rendering using geometry is through dynamic
meshes as presented in the work of de Heras et al. [dHSMT05], where dy-
namic meshes use systems of caches to reuse skeletal updates which are typi-
cally costly. A hybrid of dynamic and baked meshes is found in [YMdHC∗05]
where the graphics programming unit (GPU) is used to its fullest.

What is common to all approaches is instancing of template humans, by
changing the texture or color, size, orientation, animation, animation style,
and position. This is carefully taken care of to smoothly transition from one
representation to another so as not to create pops in representation styles. In
the billboarding scenario this is done by applying different colors on entire
zones such as torso, head, legs, and arms. This way the texture memory is
used more efficiently as the templates are more flexible. For the geometrical
approaches these kinds of differences are usually represented using entirely
different textures as the humans are too close just to change basic color for
an entire zone [UdHCT04].

2.8 Crowds in Non-Real-Time Productions

One of the domains with the fastest growth of crowd simulations in recent
years is special effects. While only 10 years ago, there were no digital crowds
at all, nowadays almost every blockbuster has some, with music videos, televi-
sion series, and advertisements starting to follow. In comparison with crowds
of real extras, virtual crowds allow one to significantly reduce costs of pro-
duction of massively populated scenes and allow for bigger creative freedom
because of their flexibility. Different techniques, as replications of real crowd
video footage, particle systems, or behavioral animation, have been employed
to add crowds of virtual extras to shots in a broad range of movies, from his-
torical dramas,1–3 through fantasy and science fiction stories,4–6 to animated
cartoons.7–9

1 http://www.titanicmovie.com
2 http://www.dreamworks.com
3 http://troymovie.warnerbros.com
4 http://www.starwars.com/
5 http://www.lordoftherings.net
6 http://whatisthematrix.warnerbros.com
7 http://www.pixar.com/featurefilms/abl
8 http://disney.go.com/disneyvideos/animatedfilms/lionking
9 http://www.shrek2.com
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The main factors determining the choice of techniques are the required
visual quality and the production costs allowed for the project [Leh02]. It is
common to use different techniques even in a single shot in order to achieve
the best visuals; for example, characters in the front plane are usually real
actors, with 3D characters taking secondary roles in the background.

Although a considerable amount of work was done on crowds in movies,
only relatively little information is available, especially concerning more tech-
nical details. Most knowledge comes from disparate sources, for example, from
“making-of” documentary features, interviews with special effects crew or in-
dustry journalist accounts. For big budget productions, the most common
approach is in-house development of custom tools or suites of tools which
are used for a particular movie. As the quality of the animation is paramount,
large libraries of motion clips are usually used, produced mainly by motion
capture of live performers. All production is centered around shots, most of
the times only a few seconds long. In contrast to real-time simulations, there
is little need for continuity of the simulation over longer periods of the time.
It is common that different teams of people work on parts of the shots which
are then composited in postprocessing.

The most advanced crowd animation system for non-real-time productions
is Massive; used to create battle scenes for The Lord of the Rings movie
trilogy.10 In Massive, every agent makes decisions about its actions depending
on its sensory inputs using a brain composed of thousands of logic nodes
[Koe02]. According to the brain’s decision, the motion is selected from an
extensive library of motion captured clips with precomputed transitions. For
example, in the second part of the trilogy over 12 million motion captured
frames (equivalent to 55 hours of animation) were used. Massive also uses
rigid body dynamics, a physics-based approach to facilitating realistic stunt
motion such as falling, or animation of accessories. For example, a combination
of physics-based simulation and custom motion capture clips was used to
create the scene of “The Flooding of Isengard” where orcs are fleeing from a
wall of water and falling down the precipice [Sco03].

In comparison with real-time application, the quality of motion and visuals
in non real-time productions is far superior, but it comes at a great cost. For
example, for The Lord of the Rings: The Two Towers, rendering of all digital
characters took 10 months of computations on a strong render farm with
thousands of computers [Doy03].

2.9 Crowds in Games

In current computer games virtual crowds are still relatively rare. The main
reason is that crowds are inherently costly, both in terms of real-time resource
requirements and for costs of a production. Nevertheless, the situation is

10 http://www.massivesoftware.com
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starting to change, with the real-time strategy genre leading the way as in-
crease of sizes of involved armies has a direct effect on gameplay [Rom04,
The04].

The main concern for games is the speed of both rendering and behav-
ior computation. In comparison with non-real-time productions, the quality
of both motion and rendering is often sacrificed in a trade-off for fluidity. Sim-
ilarly to movie production, computer games often inject realism into virtual
worlds from the real world by using large libraries of animations, which are
mostly motion captured. The rendering uses level-of-detail techniques, with
some titles employing animated impostors [Med02].

To improve costs of behavior computations for games that involve a large
number of simulated entities, simulation level-of-detail techniques have been
employed [Bro02,Rep03]. In such techniques, behavior is computed only for
characters that are visible or soon to be visible. Characters are created in
a space around the player with parameters set according to some expected
statistical distributions, the player lives in a “simulation bubble”. However,
handling simulation LOD is much more complex than handling rendering
LOD. It is perfectly correct not to compute visualization for agents that are
not visible, but not computing behaviors for hidden agents can lead to an
incoherent world. In some games it is common that the player causes some
significant situation (for example, traffic jam), looks away, and then after
looking back, the situation is changed in an unexpected way (a traffic jam is
“magically” resolved).

In case the scenario deals with hundreds or thousands of entities, many
times the selectable unit with distinct behavior is a formation of troops, not
individual soldiers. What appears to be many entities on the screen is indeed
only one unit being rendered as several visually separated parts 11 [Med02].12

A special case are sport titles such as various football, basketball, or hockey
simulations, where there is a large spectator crowd, but only of very low
details. In most cases there is not even a single polygon for every crowd
member (compared with individual impostors in strategy games). A majority
of the crowd is just texture with transparency applied to stadium rows, or to
a collection of rows, and only a few crowd members, close to the camera, are
3D models.

2.10 Crowd Scenario Authoring

Regardless of the quality of crowd rendering or the behavioral model, a virtual
crowd simulation is not very useful if it is too difficult to produce content for it.
The authoring possibilities are an important factor influencing the usability of

11 http://www.totalwar.com
12 http://praetorians.pyrostudios.com
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a crowd simulation system, especially when going beyond a limited number
of “proof-of-concept” scenarios. When increasing the number of involved in-
dividuals, it becomes more difficult to create unique and varied content of
scenarios with a large number of entities. Solving one set of problems for
crowd simulation (such as fast rendering and behavior computation for large
crowds) creates a new problem of how to create content for crowd scenarios
in an efficient manner.

Only recently have researchers started to explore ways of how to author
crowd scenes. Anderson et al. [AMC03] achieved interesting results for a par-
ticular case of flocking animation following constraints. Their method can be
used, for instance, to create and animate flocks moving in shapes. Their al-
gorithm generates a constrained flocking motion by iterating the simulation
forwards and backwards. Nevertheless, their algorithm can get very costly
when increasing the number of entities and simulation time.

Ulicny et al. [UdHCT04] proposed a method to create complex crowd
scenes in an intuitive way using a Crowdbrush tool. By employing a brush
metaphor, analogous to the tools used in image manipulation programs, the
user can distribute, modify, and control crowd members in realtime with im-
mediate visual feedback. This approach works well for creation and modifi-
cation of spatial features; however, the authoring of temporal aspects of the
scenario is limited.

Sung et al. [SGC04] used a situation-based distributed control mechanism
that gives each agent in a crowd specific details about how to react at any
given moment based on its local environment. A painting interface allows
one to specify situations easily by drawing their regions on the environment
directly like drawing a picture on the canvas. Compared with previous work
where the user adds, modifies, and deletes crowd members, here the interface
operates on the environment.

Chenney [Che04] presented a novel technique for representing and design-
ing velocity fields using flow tiles. He applied his method on a city model
with tiles defining the flow of people through the city streets. Flow tiles drive
the crowd using the velocity to define the direction of travel for each mem-
ber. The use of divergence-free flows to define crowd motion ensures that,
under reasonable conditions, the agents do not require any form of collision
detection.



3

Modeling of Populations

3.1 Introduction

Virtual human models are becoming widespread in computer graphics
applications such as virtual reality applications, simulations, and games.
Usually, due to the complexity of human bodies, realistic shapes are built
by means of an exhaustive and long process of graphic design. In addition, if
an application requires the presence of groups and crowds of characters, a
diversity of shapes and types of animations is necessary to realistically
populate a virtual environment. As a consequence, the artists involved should
manually create such multiplicity, increasing both the complexity of their task
and the time needed to accomplish it.

This chapter does not intend to be a guide for teaching artists how
to model characters but it shows techniques in the area of creating large
quantities of realistic virtual humans. The main goal of those works is to gen-
erate simultaneously a large number of virtual characters different from each
other regarding the geometric model of their bodies.

We present some of the main works related to the modeling of virtual
humans for crowds. Magnenat-Thalmann et al. [MTSC03] classified the
methodologies for modeling virtual people into three major categories:
creative, reconstructive, and interpolated. Geometric models created by artists
such as anatomically based models fall into the first approach. The second
category built 3D virtual human’s geometry by capturing existing shape from
3D scanners, images, and even video sequences. Interpolated modeling uses
sets of example models with an interpolation scheme to reconstruct new
geometric models.

Below we review modeling techniques of virtual humans. First we look
for methods that manually generate virtual characters. Section 3.3 presents
techniques for shape capture of real people. Methods for modeling the variety
of human body shapes are previewed in Section 3.4. Section 3.5 is devoted
to presenting a model that generates a great amount of secondary characters
in a simple and fast way for use in virtual reality applications, games, and
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real-time simulations. The creation process of the population diversity uses
the body type classification model called somatotype, generating characters
with realistic appearance. Finally, Section 3.6 shows how to create materials
or textures in order to provide a greater visual diversity.

3.2 Creative Methods

The most traditional techniques for manually modeling characters are
subdivision modeling and patch modeling. Subdivision modeling is a proce-
dure for creating smooth models while keeping the total polygon count at a
low level. The sculpting process is less confusing due to small point counts.
Objects are made from a simple object such as a cube that is subdivided
and deformed several times to reach the desired form. Patch modeling can be
accomplished by creating points, polygons, splines, or Nurbs (Non-Uniform
Rational B-Splines) and converting them to a polygon object.

In this case, a surface model is either a polygonal mesh or a set of surface
patches, whose deformation is driven only by the motion of an underlying
hierarchical structure or skeleton. This technique assigns each vertex point to
one or more skeleton joints. Deformation is then implemented as a function
of joint angle.

Other works aim at mimicking more closely the actual anatomy of humans
or animals. The multilayered (or musculoskeletal) models contain the skeleton
layer, intermediate layers to simulate the body volume (muscles, fat, bones,
and so on), and the skin layer.

Wilhelms and Gelder [WG97] developed an interactive tool for designing
and animating animals. In their system, ellipsoids or triangular meshes rep-
resent bones and muscle. Each muscle is a generalized cylinder made up of a
certain number of cross sections that consist in turn of a certain number of
points. The muscles show a relative incompressibility when deformed. A ver-
alization is used for extracting the skin mesh initially. It includes a filtering
stage whose purpose is to blur the approximating muscles, and a decay that
moves the subsurface at some distance from the underlying components. Af-
terwards, a spring mesh is constructed from the skin mesh. Each edge spring’s
stiffness is related to the adjacent triangles’ areas while the skin vertices are
elastically anchored to underlying components. A relaxation procedure is per-
formed for each animation frame. The number of iterations can be quite low,
even for large motions, according to the authors.

Scheepers et al. [Scheepers97] stressed the role of underlying components
(muscles, tendons, etc.) on the form, in their work on anatomically modeling
the human musculature. They use three volume-preserving geometric prim-
itives for three different types of muscles: ellipsoids are used for rendering
fusiform muscles; multi-belly muscles are represented by a set of ellipsoids po-
sitioned along two spline curves; tubularly-shaped biscuit patches provide a
general muscle model. Isometric contraction is handled by introducing scaling
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factors and tension parameters. The skin is obtained by fitting biscuit patches
to an implicit surface created from the geometric primitives. The musculature
of the shoulder and upper arm is detailed as an example and they achieve
good results.

3.3 Body Shape Capture

An easier and more natural way for an artist to work in 3D is to sculpt the
clay models of a character. Some works rebuild the geometric model from
3D scanners, photos, or video of real people. This method is efficient in the
creation of geometric models of virtual humans with realistic appearance, but
the modification of the final model is not trivial.

Since the advent of 3D scanners, there has been a great deal of interest
in the application of that technology to reconstructing human bodies. A 3D
scanner is a device that analyzes a real-world object to collect data on its shape
and possibly color. The collected data can then be used to construct digital,
three dimensional models that are used in a wide variety of applications. These
devices are used by industry in the production of virtual characters for movies
and video games.

For many years, the goal has been to develop techniques to convert the
scanned data into complete, readily Animatable models. Apart from solving
the classical problems such as hole filling and noise reduction, the internal
skeleton hierarchy should be appropriately estimated in order to make them
move. Accordingly, several approaches have been under active development
to endow semantic structure to the scan data. Dekker [Dek00] used a series of
meaningful anatomical assumptions in order to optimize, clean, and segment
data from a Hamamelis whole body range scanner in order to generate quad
mesh representations of human bodies and build applications for the clothing
industry.

Recently, the development of technologies especially for human body
modeling has become a popular area. To recover the degrees of freedom associ-
ated with the shape and motion of a moving human body, most of the existing
approaches introduce simplifications by using a model-based approach. Kaka-
diaris and Metaxas [KM95] use 2D images from three mutually orthogonal
views to fit a deformable model to approximate the different body size of sub-
jects. The model then can be segmented to different body parts as the subject
moves. Plänkers et al. [PFD99] also use video cameras with stereo pair for
the model acquisition of body parts. A person’s movements such as walking
or raising arms are recorded to several video sequences and the program au-
tomatically extracts range information and tracks outline of the body. The
problem to be solved is twofold: First, robustly extract silhouette information
from the images; second, fit the reference models to the extracted information.
The data were used to instantiate the models, and the models, augmented by
our knowledge of the human body and its possible range of motions, are in
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turn used to constrain the feature extraction. They focus, however, more on
the tracking of movement and the extraction of a subject’s model is considered
as the initial part of a tracking process.

Recently, more sophisticated models were introduced and their aims lim-
ited to the construction of a realistic human model. Hilton et al. [HBG∗99]
developed a technique that involves the extraction of body silhouettes from a
number of 2D views (front, side, and back) and the subsequent deformation of
a 3D template to fit the silhouettes. The 3D views are then mapped as texture
onto the deformed model to enhance realism. Similarly, Lee et al. [LGMT00]
proposed a feature-based approach where silhouette information from three
orthogonal images is used to deform a generic model to produce a personalized
animated model.

Based on adding details or features to an existing generic model, these
approaches concern mainly the individualized shape and visual realism using
high quality textures. While they are effective and visually convincing in the
cloning aspect, these approaches hardly give any control to the user, i.e., it is
very difficult to modify these meshes to a different shape as the user intends.
These approaches have the drawback that they must deal with special cases
using ad hoc techniques.

3.4 Interpolated Techniques

In the literature, a considerable amount of work has been reported with respect
to editing existing models and blending between more than two examples to
generate new ones.

Azuola et al. [ABH∗94] present the Jack platform to properly generate
and animate scaled human models. Human factors engineering uses Jack as a
design tool that supports testing a product for human usability. For example,
in airplane cockpit design, one may be concerned with the pilot’s visibility and
access to controls. The system creates a standardized human model based on
the given statistically processed population data or, alternatively, a given per-
son’s dimension can be directly used in the creation of a virtual human model.
In the former case, it automatically generates dimensions of each segment of
a human figure based population data supplied as input. Their initial virtual
human was composed of 31 segments, of which 24 had a geometrical represen-
tation. For each segment or body structure with geometrical representation,
three measurements were considered, namely, the segment length, width, and
depth or thickness. Their Spreadsheet Anthropometry Scaling System (SASS)
enables the user to create properly scaled human models that can be manipu-
lated in Jack. The SASS is a spreadsheet-like system which allows interactive
access to all anthropometric variables needed to size a virtual human figure.

Lewis [Lew00,LP00] describes a system implemented as a plug-in to Maya
by using Maya’s embedded script language. It aims to generate geometric
models of virtual human bodies by using genetic algorithms. His paper shows
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some body samples selectable by the user, whose choices are used to define the
fitness function. This function is finally used to produce a new body model.
In order to create a wide diversity of body shapes, some random changes are
made in the genotypes of the baseline models. All the used geometric models
in this work have the same hierarchy. Thus, the genotypes are made of strings
with the dimensions of each body part.

Modesto et al. [MGR01] present how PDI/Dreamworks produced many
different secondary characters in crowd scenes for Shrek. They create some
generic characters (six body types for guards and five body types for the other
characters) that are uniformly scaled to produce new ones. After character
creation, the designers select what is visually acceptable or not, since the
system can create some shapes which are aesthetically unpleasant. To increase
the variety of characters, they model different heads, hats, and hairs to each
original model.

More recently, novel interpolation methods that start with range scan data
and use data interpolation to generate controllable diversity of appearance in
human face and body models have been introduced. Arguably, the captured
geometry of real people provides the best available resource to model and
estimate correlations between measurements and the shape.

The automatic modeling approach introduced by Seo and Magnenat-
Thalmann [SMT03] is aimed at realistic human models whose sizes are con-
trollable by a number of anthropometric parameters. Instead of statistically
analyzed form of anthropometric data, they make direct use of captured sizes
and shapes of real people from range scanners to determine the shape in rela-
tion to the given measurements. The body geometry is represented as a vector
of fixed size (i.e., the topology is known a priori) by deforming the template
model onto each scanned model. A compact vector representation was adopted
by using principal component analysis (PCA). A new desired physique is ob-
tained by deformation of the template model, which is considered to have
two distinct entities — rigid and elastic deformation. The rigid deformation is
represented by the corresponding joint parameters, which will determine the
linear approximation of the physique. The elastic deformation is essentially
vertex displacements, which, when added to the rigid deformation, depict the
detail shape of the body. Using the prepared dataset from scanners, inter-
polators are formulated for both deformations. Given a new arbitrary set of
measurements at runtime, the joint parameters as well as the displacements
to be applied on the template model are evaluated from the interpolators.
And since an individual can simply be modeled by providing a number of
parameters to the system, modeling a population is reduced to the problem
of automatically generating a parameter set. The resulting models exhibit a
visual fidelity, and the performance and robustness of the implementation.

Allen et al. [ACP03] present a method for fitting scanned models of the
human body to high-resolution template meshes. Once the correspondence is
established for all example models, a mapping function is found by solving a
transformation that maps body features, such as height and weight, formed
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by PCA. This function can then be used to create new different bodies by
modifying their weight or height.

The model presented in the next section is based on a variation of a tem-
plate similar to Azuola’s framework. However, in this work there are no con-
straints related to the number of segments and the hierarchy of the geometric
models, as existent in Azuola’s method, since the technique presented here
makes use of the geometric model’s skeleton defined in the specified template.
Furthermore, a wide variety of body shapes with reliable dimensions and re-
alistic appearance can be created due to the use of the somatotype body type
classification model to create the required diversity.

3.5 A Model for Generation of Population

Due to the growing use of 3D virtual humans, the amount of research be-
ing carried out for automatic generation of geometric models is increasing.
However, few works have considered the aesthetically accepted (visual qual-
ity of results) and the association of the geometric model to a skeleton to
provide animations in the generation of virtual humans. Thus, we propose
the modeling of virtual humans in their possible shapes based on a classical
classification of real human body forms, in order to employ a coherent way
to generate the largest number of realistic virtual characters possible. From
all the methods presented for the classification of real human body types,
the somatotype model is the most consolidated of them. This concept has di-
rect application in medicine and physical education and helps to understand
human development within contexts of growth, exercise, performance, and
nutrition. It was introduced by Sheldon [She40] and later modified by Heath
and Carter [HC90]. Sheldon determined that there are three basic elements
which, when put together, defined all physical types. He nominated the three
basic elements as endomorphy, mesomorphy, and ectomorphy, is relation to
the three embryonic layers (endoderm, mesoderm, and ectoderm).

To Sheldon, endomorphy is centered in the abdomen and all the digestive
system, mesomorphy is centered in the muscles, and ectomorphy is related
to the brain and the nervous system. According to Sheldon, the body shape
of each person is composed of these three elements. Nobody is exclusively
endomorph, not presenting at the same time some portion of mesomorphy and
ectomorphy. In fact, everyone carries these components in different quantities.
The somatotype is then expressed as a three-number ratio representing the
endomorphy, mesomorphy, and ectomorphy components, respectively, always
following this order. Endomorphy is the relative fatness, mesomorphy is the
relative musculoskeletal robustness, and ectomorphy is the relative linearity
or slenderness of a physique.

The simplest way to imagine the variety of forms of human bodies is to
examine their extremities. In accordance with Sheldon’s method, a body of
somatotype 7-1-1 is an extreme endomorph with minimum mesomorphy and
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ectomorphy. This type of body is distinguished from others due to character-
istics such as mass concentration in the abdominal area, soft skin, soft body
contours, nonprominent bones, and spherical head. The body shape of an
extreme mesomorph, or 1-7-1, is characterized by having well-developed and
defined muscles, wide bones, predomination of the chest area over the abdomi-
nal region, salient muscles on both sides of the neck, and well-developed thighs
and arms. The physical form of a extreme ectomorph, or 1-1-7, is one of fragile
and delicate appearance with weak musculature. In contrast to the other two
extremes, he or she has a lank aspect. To determine all the body types and to
locate possible corporal forms, Sheldon defined a diagram. Figure 3.1 shows
the extreme body forms.

Indeed, the somatotype model is originally used to classify real human
bodies. We propose a computational model where somatotype classification is
used to generate virtual human bodies. However, it is important to recognize
that the somatotype method is a general descriptor of physique and does not
define the specific dimensions of each body part. Thus, by using some examples
of body forms with their respective somatotype values, we can generate a
multiplicity of visually valid shapes.

The geometric modeling of virtual characters in our approach is based
on two input data: (i) the input character templates and (ii) the intended
characteristics of the population to be created. The templates in our model
consist of the geometric model and a set of information such as: gender, min-
imum and maximum age, dimensions of each part of the body defined for the
geometric model’s skeleton, dimensions for samples of extreme somatotypes
(endomorph, mesomorph, and ectomorph), animation files, and a further set
of materials (to provide better visual variations). This information will be
detailed in the current and next sections. As soon as the input data are gath-
ered, the generation of characters’ geometry starts. Briefly, the steps for the
generation of a population of virtual characters are:

Fig. 3.1. The three extreme somatotypes [Arr88].
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1. Definition of the initial data: Statistical distributions of population
data specified by the user.

2. Selection of a template: The templates are selected according to the
informed population characteristics. This selection takes into account the
template’s gender and age, by searching the template that best fits the
population requirements.

3. Definition of new somatotypes: A somatotype value is defined for each
new character to be created.

4. Calculation of influence of sample somatotypes: Once a somato-
type value is defined for each character to be created, we compute the
contribution of each extreme somatotype contained in the initial tem-
plate. Consequently, the generation of a new character is a function of
three extreme somatotype contributions.

5. Calculation of mesh variation: The contribution calculated in step 4 is
used to define the shape of the new body to be generated. The variations
are then calculated to each of the body parts of the geometric model that
will be deformed to reach the defined shape.

6. Body parts’ deformation: The geometric model’s vertices are deformed
to generate the new shape applied to the new character.

The definition of initial data can be used either for a specific individual or
for a population. Results generated by this model are shown in Section 3.5.7.
Each of the previous steps is specified in the next sections.

3.5.1 Definition of the Initial Data

The geometric modeling of the virtual characters is established according to
two pieces of information: the templates and the physical characteristics of the
population to be created. The physical characteristics of the population to be
created are: name and number of characters to be generated, percentage of
female and male characters, age, height, and weight averages besides standard
deviations. The population will be created according to the given statistical
distribution. First, a number of male and female models are created by using
the informed values of quantity and percentages of females and males to create
the new population.

Then, for each character to be created, values of age, height, and weight are
defined regarding the informed distribution. The creation of only one character
is also possible by defining accurate values for sex, age, height, and weight.
A user interface is used to inform these values individually for each character
to be created. This information is used to create the geometric model of the
new virtual humans, as explained in the next sections.

3.5.2 Choice of a Template

A template is selected to each new character according to data defined in
Section 3.5.1. This selection takes into account the template’s gender and age
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by searching the template that best fits the population requirements. The
gender information must coincide with the gender of the template, and the
age must range from the minimum to the maximum values informed in the
template. The number of templates to be used is not limited and can be
specified by the user depending on the purpose of the simulation. We use only
two templates: one male adult (aged between 15 and 80) and one female adult
(aged between 15 and 80).

3.5.3 Definition of New Somatotypes

There are three ways to obtain the somatotype ratio of a person: the an-
thropometric plus photoscopic method, which combines values of anthro-
pometry and ratios provided by a photograph; the photoscopic method, in
which the ratios are gathered from standardized photographs; and the an-
thropometric method, in which the anthropometry is used to establish the
somatotype criterion.

Due to the fact that most people do not have the opportunity to collect the
ratio criterion through the photographic method, the anthropometric system
is the most usual. Also, it requires a smaller amount of resources, such as pho-
tographic equipment and calculation. As mentioned before, the somatotype is
composed of three components. In anthropometric systems, the endomorphic
factor is estimated by the measurement of skinfolds, the mesomorphic factor
is obtained by the measurement of the body dimensions, and the ectomorphic
factor is computed considering the height divided by the cube root of weight
(HWR):

HWR =
height

3
√

weight
(3.1)

When the system generates the somatotype of the new character, the ec-
tomorphic factor is calculated through its height and weight values. Later,
values for mesomorphy and endomorphy are specified according to userdefini-
tion. If one wants to generate diversity in population model, the system can
choose mesomorphy and endomorphy randomly. On the other hand, if the
user wants to provide a range of values for such factors, the system will gener-
ate people coherently with data specification. And finally, it is determinated
whether the new somatotype calculated is valid or not (according to [NO96]).
If the new somatotype ratio is invalid, new values for mesomorphy and endo-
morphy are defined by the system. Indeed, the correlation between the three
components is presented in Equation 3.2, where k is a constant used as metric
for validating the generated somatotype.

Ectomorphy + Mesomorphy + Endomorphy = k (3.2)

We empirically observed that the sum of three somatotype components
results in a value of k in the range [9;13] for measurements of in people two
books [HC90, NO96]. In results given in Section 3.5.7 we use the k in this
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specific range; however, it can be changed, if desired. The creation of only one
individual is also possible and this is accomplished by the input of specific
somatotype values. In the prototype implemented in this work, the ectomor-
phy component is automatically calculated through the values of height and
weight. The user, through an interface, specifies values for mesomorphy and
endomorphy.

3.5.4 Calculation of Influence of Sample Somatotypes

To determine the dimensions of a new character, this model should have an ex-
ample of each extreme somatotype (endomorph, mesomorph, and ectomorph).
The initial templates contain tables of sample dimensions of extreme soma-
totypes for each body part defined in the geometric model’s skeleton. The
influence of each of the dimensions sampled (extreme somatotypes) is calcu-
lated as a function of the dimensions of the extreme somatotypes, the new
somatotype associated with the character, and the dimensions of the chosen
template.

In real life, people do not put on weight or increase their musculature in the
same way. They differ from one another, since there are people in many dif-
ferent forms. For example, some people put on weight uniformly while others
do so more noticeably in the abdominal area, and others in the pelvis, but-
tocks, and thighs. For example, athletes engaged in different sport modalities
increase or reduce their musculature in a particular way, depending on their
physical activity. To achieve a larger diversity of body forms, it is possible to
inform more than one table of dimensions for each of the extreme somatotypes.
For instance, tables can be created to measure a body presenting a bulky ab-
domen, and another type of table can be created for a body with big buttocks
and thighs for samples of endomorph. In this case, a table of dimensions can
be specifically chosen for each extreme somatotype (endomorph, mesomorph,
and ectomorph), called S1, S2, and S3, where S1endo, S1meso, and S1ecto

are the three components of extreme somatotype S1 (equivalent to S2 and
S3). If more than one dimension table is available for each somatotype and
the user requires great diversity, a somatotype table can be randomly chosen
from existing ones.

To calculate the influence (weight W ) of each of the sample somatotypes
(WS1, WS2, and WS3), the product of the composed matrix of the three sample
somatotypes (S1, S2, and S3) by the desired weight (W ) is equal to the value
of new somatotype (NS), as shown in Equations 3.3 and 3.4.

⎡

⎣
S1endo S2endo S3endo

S1meso S2meso S3meso

S1ecto S2ecto S3ecto

⎤

⎦ ·
⎡

⎣
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⎤
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⎡

⎣
NSendo

NSmeso

NSecto

⎤

⎦ (3.3)
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⎧
⎪⎨

⎪⎩

NSendo = S1endo · WS1 + S2endo · WS2 + S3endo · WS3

NSmeso = S1meso · WS1 + S2meso · WS2 + S3meso · WS3

NSecto = S1ecto · WS1 + S2ecto · WS2 + S3ecto · WS3

(3.4)

Equation 3.4 calculates the contribution of each of the extreme somato-
types solved through a simple linear equation system solver with three vari-
ables. The corresponding weight for each somatotype (WS1, WS2, and WS3)
is used in the variation of the body parts, as presented in the next section.

3.5.5 Calculation of Mesh Variation

The geometric model deformation is done in an approach similar to Azuola’s
method; except for the number of body parts which is not fixed in this method,
the generated body follows the specification of the skeleton of the template’s
geometric model. In this work, the template’s geometric model or the skeleton
have no restrictions related either to the topology or to the number of vertices.
The artist is free to shape the geometric models as he/she pleases.

The tables of body dimensions contained in the template are used to de-
fine the dimensions of each of the body parts of the new character in each
direction (height, width, and depth). The body dimensions and the weights
associated with the three extreme somatotypes are used as a linear combina-
tion to determine the corporal form of the character. First, the new dimension
(ND) of each body part p is calculated as a function of the part size (PS) of
sample somatotypes (S1, S2, and S3) and their associated weight (computed
in Section 3.5.4). The new dimension in each of the body part directions i
(height, width, and depth) is the sum of the products between the calculated
weight (Equation 3.4) and the dimensions of each sample somatotype in the
same body part, as shown in the equation below:

NDpi = WS1pi
· PSS1pi

+ WS2pi
· PSS2pi

+ WS3pi
· PSS3pi

(3.5)

When creating new characters, the shape of the template’s body varies
according to the combination of sample somatotypes chosen. Thus, if there
are more tables of dimensions to each extreme somatotype, different body
shapes will be created using the same somatotype ratio, generating a greater
crowd diversity. After the new dimension (NDpi) of each part is defined,
the variation (V ariation) that should be applied in the template’s geometric
model is computed, indicating the growth factor in each of the directions i
of each body part. The template contains a table of dimensions of the base
geometric model that will be used to modify its form. The variation in each
part of the body (p) is determined through the division of the new calcu-
lated dimension by the base geometric model dimension (BD). Moreover, a
small random value (rand), computed between [−0.1 and 0.1], is also added
to increase the diversity of the generated geometric models. The main ob-
jective of this random number is to prevent the creation of identical models
using the same somatotype ratio and the same sample dimension tables. This
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equation is applied to each direction i, and calculates the variation in each
body part p:

V ariationpi =
NDpi

BDpi

+ rand (3.6)

After calculating the variation that will be applied to the template’s ge-
ometric model in each of its parts (V ariationpi), the vertices that compose
the mesh of the geometric model are deformed in order to create the new
character, as described in the next section.

3.5.6 Body Parts’ Deformation

First, the geometric model base is entirely scaled to reach the desired height.
This scale is made uniformly so that no deformation is produced in the geomet-
ric model. If the geometric model were scaled only in the height (stretched),
some body parts would be deformed (the head would be elongated thus chang-
ing the face, for instance). To determine the scale to be applied to the new
geometric model, the height ratio (HR) between the template height (TH)
and the new character height (CH) is calculated as follows: HR = CH/TH .
Thus, each mesh vertex of the new geometric model is multiplied by HR in
order to reach the desired height.

After the entire body is uniformly deformed, each body part will be scaled
differently to reach the desired shape of the new character. To calculate the
new position of each vertex v of the geometric model, the previously computed
variations of the body part p in the direction i (V ariationpi) are used with the
influence (Influence) of the skeleton bone of the body part p in the vertex v:

v = v ·
∑

p

V ariationpi · Influence[pv] (3.7)

The influence of each vertex in a body part (pv) indicates how this ver-
tex will vary when the skeleton moves. Thus, besides the different body parts
varying differently and nonuniformly scaled, no discontinuity will be generated
between the parts in the geometric model of the new character. These influ-
ences are acquired from the geometric model, exported by an artist through a
modeling program (3D Studio or Maya, for instance) and taken into account
in this model.

The new characters are created through the variation in the vertices that
compose the template’s geometric model. The effects suffered by the vertices
due to the animation of each skeleton bone are the same. Thus, the rigging
(association between skeleton and geometric mesh), one of the most complex
and difficult tasks of a designer in order to animate a virtual human, does
not need to be performed for the new characters in our model. The skeleton
is not modified either. Thus, the animations created for the geometric model
defined in the template are directly applied to the geometric model of the
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new characters. In addition, template models can contain a set of materials or
textures in order to provide a greater visual diversity. Each character created
is defined through a texture contained in the template, which is randomly
chosen. Based on input data, the model is capable of simultaneously gener-
ating a wide variety of characters, by applying the same skeleton of a chosen
template. The model presented in this work has no restrictions regarding the
topology, number of vertices or hierarchy. The model is capable of manipu-
lating geometric models with any hierarchic structure or skeleton, since the
tables of dimensions are generated in accordance with the skeleton of the
template. In Section 3.5.7 some results with different hierarchies as well as
different numbers of polygons will be presented.

The expected quality of the results obtained from the use of this method
depends on the application to which it is addressed. For example, when the
artists shape a main character for the production of movies, they are interested
in the details and peculiarities of the specific model, which will probably not
be based on templates. However, the objective of this model is to generate
characters that can be directly applied in virtual reality applications, games,
real-time simulations, and even secondary characters for movie production.

3.5.7 Results and Discussion

In this section, some results obtained by the implemented prototype will be
examined. The first point concerns the following question: Do the shapes of
our created characters look realistic? In the first section of this chapter, we
argued that our work allows the creation of aesthetically acceptable charac-
ters. Then, we proposed a model consisting of templates and anthropometric
data based on real people somatotypes to create a variety of characters. In
this section, we propose to answer the above question through the use of two
metrics that will indicate whether a body appearance is realistic or not. Such
assessment is performed from two points of view: first, we consider the micro-
scopic information, i.e., checking if the appearance of a specific character looks
as it should according to its input data compared with real life, and second,
the macroscopic analysis, i.e., whether a population simultaneously generated
attains a required diversity of shapes. The following subsections describe both
standpoints.

Microscopic Analysis

This subsection describes details about the generation of specific characters,
showing some geometric models along with parameters informed for their
creation. Thus, we can verify whether the generation of new geometric models
respects the input data and whether the shape of a character looks coherent
with such data. Further, images of real people will be presented in order to
provide a comparison between them and generated characters. The criterion
used to accomplish the microscopic analysis was to visually compare pictures
of real people with images of the generated geometric models by using the
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(a) (b) (c)

Fig. 3.2. Picture (a) and generated character (b) of a fat and strong man
(height: 171.5 cm; weight: 100.5 kg; somatotype: 4-8- 1

2
). (c) Geometric model

of a virtual human with an average body (height: 171.5 cm; weight: 63.8 kg;
somatotype:4-4-3).

same values of height, weight, and somatotype. The body form of real people
and the generated geometric models should not differ significantly.

Images of male and female characters created by the model proposed in
this work follow, which are displayed and compared with images of real people,
reproduced from [HC90]. The tool that creates a single character is fed with
the same information of height, weight, and somatotype obtained from the
person pictured. This information is presented for each figure. For the male
models, only one sample dimension table of the extreme somatotypes for each
one was used. Figure 3.2 illustrates some examples of bodies created with
only three dimension tables. Figure 3.2(a) shows a body of a robust man and
the image of its corresponding geometric model (b), i.e., it was generated with
the same values regarding height, weight, and somatotype. If the mesomorphy
and endomorphy ratings of this man were reduced, his body would look like
an average person’s one, as shown in Figure 3.2(c).

There are different ways in which people can gain or lose weight, due to
different metabolic and hormonal characteristics. These different forms can be
defined, in this work, by setting more than one dimension table to a sample
somatotype in the template. To illustrate this aspect, two dimension tables for
extreme endomorphs have been used in a female template: the first one was
created to generate bodies whose parts showing more fat are located in the
hips, buttocks, and thighs, and another dimension table to define the body
form of a woman who put on weight uniformly over her whole body. Dimension
tables for other body types could be used, but we can demonstrate the results
obtained with a minimal set of parameters. Figure 3.3(a) presents a body of
an average woman whose possible bigger tendency is to put on weight in the
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(a) (b) (c)

(d) (e) (f)

Fig. 3.3. Picture (a) and generated character (b) of an average woman
(height: 168.2 cm; weight: 56.5 kg; somatotype: 4 1

2
-2 1

2
-3 1

2
). Geometric model (c)

of a fat woman (height: 168.2 cm; weight: 79.0 kg; somatotype: 8 1
2
-2- 1

2
). Picture

(d) and generated character (e) of a thin woman (height: 176.1 cm; weight: 55.4 kg;
somatotype: 1 1

2
-3 1

2
-5 1

2
). Geometric model (f) of a fat woman (height: 176.1 cm;

weight: 70.0 kg; somatotype: 8 1
2
-2- 1

2
).

hips, buttocks, and thighs. Figure 3.3(b) shows the geometric model generated
by using the dimension table (for extreme endomorph) that represents this
same body form. If she puts on weight, her probable body form would be as
shown in Figure 3.3(c). Figure 3.3(d) presents a body of a thin woman and
the geometric model (e) created by using the same values for height, weight,



34 3 Modeling of Populations

Fig. 3.4. Low resolution characters.

and somatotype. The geometric model shown in Figure 3.3(f) is generated by
using the same somatotype from Figure 3.3(c), but now with the dimension
table for uniform fattening.

Figure 3.4 shows examples of results obtained from the use of this model
with very low resolution characters (270 polygons). The first figure shows the
original model, and the others present the results achieved for endomorph,
ectomorph, and mesomorph body types, respectively. These models were not
created for this work, showing it is generic enough to enable the use of char-
acters which contain a varied number of polygons.

Many virtual environments, games, and movies make use of crowds of
non-human-like characters. In such cases, geometric models with similar ap-
pearances are created to avoid shaping these characters one by one. Sometimes
the same geometric model, with just a few changes, is used to show a crowd
of virtual characters. Since the aim of this work is the creation of popula-
tion diversity, it is useful that the model is capable of generating nonhuman
characters too.

In order to verify the generality and robustness of this model and to ex-
tend its use, populations of nonhuman characters have been created. Figure 3.5
shows some characters created from the same geometric model. The first shape
on the left is the original model; the others present the results achieved show-
ing examples of endomorph, ectomorph, mesomorph, and a little character,
respectively.

Fig. 3.5. Non-human characters.
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Fig. 3.6. Population generated using four templates.

Table 3.1. Time (seconds) for generating virtual characters

Number of Total Number Time (s) Time (s)
Characters of Vertices with I/O without I/O

1,000 8,672,000 26 12
5,000 43,360,000 128 61

10,000 86,720,000 256 176
50,000 433,600,000 1,274 596

Although somatotype concerns a method for human body form classifi-
cation, it was verified that, through the use of this model, the creation of
nonhuman characters is also possible.

Macroscopic Analysis

This subsection aims to visually evaluate a large population from a macro-
scopic point of view. As seen in Figure 3.6, the results are acceptable since the
characters do not look aesthetically “strange.” Thus, this represents a veri-
fication as to whether the purpose of an automatic creation of populational
diversity with visual consistency has been attained. Figure 3.6 presents the
geometric models generated using four templates.

Table 3.1 presents the execution time of various numbers of created char-
acters, using a computer with a Pentium 4 3–GHz processor and 1–GB RAM,
which shows execution times with and without disk recording. The male adult
template, with 8672 vertices, was used for this time measurement. In addition,
the used memory is 341 kB for this character.

3.6 Crowd Appearance Variety

When simulating a small group of virtual humans, it is easy to make them
look singularly different: one can use several meshes and textures for each
virtual human present in the scene, and assign them different animations.
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However, when the group extends to a crowd of thousands of people, this
solution becomes unfeasible. First, in terms of design, it is unimaginable to
create one mesh and series of animations per individual. Moreover, the mem-
ory space required to store all the data would be far too demanding. Un-
fortunately, there is no direct solution to this problem. It is, however, pos-
sible to achieve good results by multiplying the levels where variety can be
introduced.

First, several human templates can be used. Second, for each template,
several textures can be designed. Third, the color of each part of a texture
can be varied so that two virtual humans issued from the same template and
sharing the same texture do not have the same clothes/skin/hair color. Fi-
nally, we also develop the idea of accessories, which allows a human mesh
to be “augmented” with various objects such as a hat, watch, backpack,
glasses, etc.

Variety can also be achieved through animation. We mainly concentrate on
the locomotion domain, where we vary the movements of the virtual humans in
two ways. First, we generate in a preprocess several locomotion cycles (walk
and run) at different speeds, which are then played by the virtual humans
online. Second, we use offline inverse kinematics to enhance the animation
sequences with particular movements, like having a hand in a pocket, or at
the ear as if making a phone call. The methodology is discussed in more details
in Chapter 4.

In the following sections, we further develop each necessary step to vary a
crowd in appearance: in Section 3.6.1, we show the three levels where variety
can be achieved. In Section 3.6.2, we detail how we segment the texture of
a virtual human in order to apply varied colors to each identified body part.
Finally, accessories are fully explained in Section 3.6.3.

3.6.1 Variety at Three Levels

When referring to appearance variety, we mean how we modulate the render-
ing aspect of each individual of a crowd. This term is completely independent
of the animation sequences played, the navigation, or the behavior of the
virtual humans.

First, let us recall that a human template is a data structure containing:

1. A skeleton, defining what and where its joints are,
2. A set of meshes, representing its different levels of detail,
3. Several appearance sets, i.e., textures and their corresponding segmenta-

tion maps,
4. A set of animation sequences that can only be played by this human

template.

For further indications on the human template structure, the reader is
directed to Chapter 7.



3.6 Crowd Appearance Variety 37

Fig. 3.7. Five different human templates.

We apply appearance variety at three different levels. The first, coarsest
level is simply the number of human templates used. It seems obvious that
the more human templates there are, the greater the variety. In Figure 3.7, we
show five different human templates to illustrate this. The main issue when
designing many human templates is the time required. Indeed, such templates
necessitate hours of work, and thus their number is limited. In order to mit-
igate this problem, we further vary the human templates by creating several
textures and segmentation map sets for each of them. For simplification, we
designate a texture and its associated segmentation maps as an appearance
set.

The second level of variety is represented by the texture of an appearance
set. Indeed, once an instance of a human template is provided with an ap-
pearance set, it automatically assumes the appearance of the corresponding
texture. Of course, changing the appearance set, and thus the texture, does
not change the shape of the human template. For instance, if its mesh con-
tains a ponytail, it will remain whatever the texture applied. However, it can
impressively modify the appearance of the human template. In Figure 3.8, we
show five different textures applied to the same human template.

Finally, at the third level, we can play with color variety on each body
part of the texture, thanks to the segmentation maps of the appearance set.
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Fig. 3.8. Five different textures of a single human template.

Section 3.6.2 is devoted to this particular level. In Figure 3.9, we show several
color modulated instances of a single mesh and appearance set.

3.6.2 Color Variety

Human templates possess several textures, improving the sense of variety. But
too often, characters sharing the same texture, i.e., looking exactly the same,
appear in the vicinity of the camera, breaking the feeling of uniqueness of the
spectator. Differentiating character body parts and then applying a unique
combination of colors to each of them is a way to obtain variation inside a
single texture.

Principles of the Method

Previous work on increasing the variety in color appearance for the characters
composing a crowd share the common idea of storing the segmentation of body
parts in a single alpha layer, i.e., each of them is represented by a specific level
of gray. Tecchia et al. [TLC02a] use multipass rendering and the alpha channel
to select parts to render for billboards. Dobbyn et al. [DHOO05b] and de Heras
et al. [dHSMT05] avoid multipass rendering by using programmable graphics
hardware. They also extend the method for use on 3D virtual humans too.
Figure 3.10 depicts a typical texture and its associated alpha zone map. The
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Fig. 3.9. Several color modulated instances of a single mesh and texture.

method is based on texture color modulation: the final color Cb of each body
part is a modulation of its texture color Ct by a random color Cr:

Cb = CtCr (3.8)

Fig. 3.10. Typical RGBA image used for color variety. The RGB part composes
the texture and the alpha the segmentation map.
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Colors Cb, Ct, and Cr can take values between 0.0 and 1.0. In order to
have a large panel of reachable colors, Ct should be as light as possible, i.e.,
near 1.0. Indeed, if Ct is too dark, the modulation by Cr will give only dark
colors. On the other hand, if Ct is a light color, the modulation by Cr will
provide not only light colors, but also dark ones. This explains why part of the
texture has to be reduced to a light luminance, i.e., the shading information
and the roughness of the material. The drawback of passing the main parts of
the texture to luminance is that funky colors can be generated, i.e., characters
are dressed in colors that do not match. Some constraints have to be added
when modulating colors randomly.

HSB Color Spaces

The standard RGB color model representing additive color primaries of red,
green, and blue is mainly used for specifying color on computer screens. With
this system, it is hard to constrain colors effectively (see Figure 3.11).

In order to quantify and control the color parameters applied to the crowd,
a user-friendly color is used. Smith [Smi78] proposed a model that deals with
everyday life color concepts, i.e., hue, saturation, and brightness, which are
more linked to the human color perception than the RGB system. This system
is called the HSB (or HSV) color model (see Figures 3.11(b) and 3.12):

1. The hue defines the specific shade of color, as a value between 0 and 360
degrees.

Fig. 3.11. Random color system (a) versus HSB control (b).
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Fig. 3.12. HSB color space. Hue is represented by a circular region. A separate
square region may be used to represent saturation and brightness, i.e., the vertical
axis of the square indicates brightness, while the horizontal axis corresponds to
saturation.

2. The saturation denotes the purity of the color, i.e., highly saturated colors
are vivid while low saturated colors are washed-out, like pastels. Satura-
tion can take values between 0 and 100.

3. The brightness measures how light or dark a color is, as a value between
0 and 100.

In the process of designing virtual human color variety, localized con-
straints are dealt with: some body parts need very specific colors. For instance,
skin colors are taken from a specific range of unsaturated shades with red and
yellow dominance, almost deprived of blue and green. Eyes are described as a
range from brown to green and blue with different levels of brightness. These
simple examples show that one cannot use a random color generator as is.
The HSB color model enables control of color variety in an intuitive and flex-
ible manner. Indeed, as shown in Figure 3.13, by specifying a range for each
of the three parameters, it is possible to define a 3D color space, called the
HSB map.

The Need for Better Color Variety

The method presented above is perfectly adequate when viewing crowds at
far distances. However, when some individuals are close to the camera, the
method tends to have too sharp transitions between body parts. There is no
smooth blending between different parts, e.g., the transition between skin and
hair, as depicted in Figure 3.14.
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Fig. 3.13. The HSB space is constrained to a three-dimensional color space with
the following parameters (a): hue from 20 to 250, saturation from 30 to 80, and
brightness from 40 to 100. Colors are then randomly chosen inside this space to add
variety on the eyes texture of a character (b).

Also, character closeups reveal the need for a new method capable of han-
dling detailed color variety, for instance, subtle makeup effects for female
characters. Moreover, at short distances, materials should be illuminated dif-
ferently to obtain realistic characters at the forefront.

To obtain a detailed color variety method, we propose, for each appearance
set, to use segmentation maps, as detailed in the next section.

Segmentation Maps

Principles of Segmentation

A segmentation map is a four channel image, delimiting four body parts (one
per channel) and sharing the same parametrization as the texture of the ap-
pearance set. The intensity of each body part is thus defined throughout the
whole body of each character, i.e., 256 levels of intensity are possible for each
part, 0 meaning it is not present at this location, and 255 meaning it is fully
present. For our virtual humans, we have made experiments with eight body
parts, i.e., two RGBA segmentation maps per appearance set. The results are
satisfying for our specific needs, but the method can be used with more seg-
mentation maps if more parts are needed. For instance, it would be possible
to use the method for adding color variety to a city by creating segmentation
maps for buildings.

Using segmentation maps to efficiently distinguish body parts also provides
two advantages over previous methods:

1. Possibility to apply different illumination models to each body part. With
previous methods, achieving such effects requires costly fragment shader
branching.

2. Possible mipmapping activation and use of linear filtering, which greatly
reduce aliasing. Since previous methods use the alpha channel of the tex-
ture to segment their body parts, they cannot benefit from this algo-
rithm, which causes the appearance of artifacts at body part seams (see
Figure 3.15).
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Fig. 3.14. Closeup of the transition between skin and hair: artifacts in previous
methods when segmenting body parts in a single alpha layer (left), smooth transi-
tions between parts with our method (right).

Fig. 3.15. Bilinear filtering artifacts in the alpha layer can be seen in the right
zoomed-in version, near the borders of the orange shirt, the green tie, and the red
vest [Mau05].



44 3 Modeling of Populations

Fig. 3.16. Examples of achievable effects through appearance sets (makeup,
freckles, clothes design, etc.), and per body part specular parameters (shiny shoes,
glossy lips, etc.).

Figure 3.16 depicts the different effects achievable with our color variety
method: makeup, texture, localized specular parameters.

The segmentation maps are designed manually. Ideally, for a given pixel,
we wish the sum of the intensity of each body part to reach 255. When design-
ing the segmentation maps with software like Adobe Photoshop,1 unwanted
artifacts may later appear within the smooth transitions between body parts.
Indeed, some pixel sums of intensity levels may not reach 255. For instance,
imagine the transition between the hair and the skin of a virtual human. A
pixel of the segmentation map may reach a contribution of 100 for the skin

1 http://www.adobe.com/fr/products/photoshop
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Fig. 3.17. A blue-to-red gradient. (a) The sum of the red and blue contributions
does not reach 255 in some pixels, causing the gradient to suffer from an unwanted
black contribution. (b) A white contribution is added so that the sum of contribu-
tions is always 255.

part, while the hair part contribution is 120. Their sum is 220. Although this is
not an issue while designing the segmented body parts in Photoshop, it leads
to problems when trying to normalize the contributions in the application.
Indeed, with simple normalization, such pixels compensate the incomplete
sum with a black contribution, thus producing a final color much darker than
expected. This is illustrated in Figure 3.17. The proposed solution is to com-
pensate this lack with white instead of black, to get a real smooth transition
without unwanted dark zones.

The results obtained with our three levels of appearance variety are il-
lustrated in Figure 3.18, where several instances of a single human template
are displayed, taking full advantage of all available appearance sets and color
variety.

Color Variety Storage

Each segmentation map of a human template is divided into four different
body parts. Each of these parts has a specific color range, and specularity
parameters. The eight body parts we need are designed in two different seg-
mentation maps, i.e., two RGBA images, each containing four channels and
thus four body parts. At its birth, each character is assigned a unique set of
eight random colors from the constrained color spaces, similarly to de Heras
et al. [dHSMT05]. These eight colors are stored in eight contiguous RGB tex-
els, starting at the top left of a 1024×1024 image, called color look up table
(CLUT). We show an illustration of a CLUT in Figure 3.19.

Therefore, if a 1024×1024 image is used for storing the CLUT, it is possible
to store a set of up to:

1024 · 1024÷ 8 = 131,072 (3.9)
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Fig. 3.18. Several instances of a single human template, exploiting all its appearance
sets and color variety.

unique combinations of colors. Note that illumination parameters are set
per body part and thus not saved within the CLUT, but directly sent to
the GPU.

3.6.3 Accessories

We have already described how to obtain varied clothes and skin colors by
using several appearance sets. Unfortunately, even with these techniques, the
feeling of watching the same person is not completely overcome. The main
reason is the lack of variety in the meshes used. Indeed, very often the same
mesh (or a small number of them) is used for the whole crowd, resulting in
large groups of similarly shaped humans. We cannot increase too much the
number of meshes, because it requires a lot of work for a designer: create the
mesh, its textures, its skinning, its different levels of detail, etc.

However, in real life, people have different haircuts, they wear hats or
glasses, carry bags, etc. These particularities may look like details, but it is
with the sum of those details that we are able to distinguish anyone. In this
section, we first explain what exactly accessories are. Then, we show from a
technical point of view the different kinds of accessories we have identified,
and how to develop each of them in a crowd application.
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Fig. 3.19. A CLUT image used to store the color of each virtual human body part
and accessory.

An accessory is a simple mesh representing any element that can be added
to the original mesh of a virtual human. It can be a hat as well as a hand-
bag, or glasses, a clown nose, a wig, an umbrella, a cell phone, etc. Accessories
have two main purposes: First, they allow one to easily add appearance variety
to virtual humans. Second, they make characters look more believable: even
without intelligent behavior, a virtual human walking around with a shopping
bag or a cell phone looks more realistic than one just walking around. The ad-
dition of accessories allows a spectator to identify himself to a virtual human,
because it performs actions that the spectator himself does every day.

We basically distinguish two different kinds of accessories that are incre-
mentally complex to develop. The first group is composed of accessories that
do not influence the movements of a virtual human. For instance, whether
someone wears a hat or not will not influence the way he walks. The second
group gathers the accessories requiring a small variation in the animation clip
played, e.g., a virtual human moving with an umbrella or with a bag still walks
the same way, but the arm in contact with the accessory needs an adapted
animation sequence.
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Simple Accessories

The first group of accessories does not necessitate any particular modification
of the animation clips played. They simply need to be correctly “placed”
on a virtual human. Each accessory can be represented as a simple mesh,
independent of any virtual human.

First, let us lay the problem for a single character. The issue is to render the
accessory at the correct position and orientation, according to the movements
of the character. To achieve this, we can “attach” the accessory to a specific
joint of the virtual human. Let us take a real example to illustrate our idea:
imagine a person wearing a hat and walking in a street. Supposing that the
hat has the correct size and does not slide, it basically has the same movement
as the head of the person as he walks. Technically, this means that the series of
matrices representing the head movement are the same for the hat movement.
However, the hat is not placed at the exact position of the head. It usually is on
top of the head and can be oriented in different ways, as shown in Figure 3.20.

Thus, we also need the correct displacement between the head joint posi-
tion and the ideal hat position on top of it. In summary, to create a simple
accessory, our needs are the following:

Fig. 3.20. Two human templates wearing the same hat, in their default posture.
The pink, yellow and blue points represent the position and orientation of the root,
the head joint (m1), and the hat accessory (m2), respectively.
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1. For each accessory:
a. A mesh (vertices, normals, texture coordinates),
b. A texture,

2. For each human template/accessory couple:
a. The joint to which it must be attached,
b. A matrix representing the displacement of the accessory, relative to

the joint.

Note that the matrix representing the displacement of the accessory is not
only specific to one accessory, but specific to each human template/accessory
couple. This allows us to vary the position, the size, and the orientation of
the hat depending on which virtual human mesh we are working with. This is
depicted in Figure 3.20, where the same hat is worn differently by two human
templates. It is also important to note that the joint to which the accessory
is attached is also dependent on the human template. This was not the case
at first: a single joint was specified for each accessory, independent of the
human templates. However, we have noticed that depending on the size of a
virtual human, some accessories may have to be attached to different joints.
For instance, a backpack is not attached to the same vertebra if it is for a
child or a grownup template. Finally, with this information, we are able to
assign each human template a different set of accessories, increasing greatly
the feeling of variety.

Complex Accessories

The second group of accessories we have identified is the one that requires
slight modifications of the animation sequences played. Concerning the ren-
dering of the accessory, we still keep the idea of attaching it to a specific joint
of the virtual human. The additional difficulty is the modification of the ani-
mation clips to make the action realistic. For instance, if we want to add a cell
phone accessory, we also need the animation clips allowing the virtual human
to make a phone call.

We focus only on locomotion animation sequences. Our raw material is a
database of motion captured walk and run cycles that can be applied to the
virtual humans. From each animation clip, an adjustment of the arm motion
is performed in order to obtain a new animation clip integrating the wanted
movement, e.g., hand close to the ear. These animation modifications can be
generalized to other movements that are independent of any accessory, for
instance, hands in the pockets. This is why we fully detail the animation
adaptation process in this chapter.

Loading and Initialization

In this section, we focus on the architectural aspect of accessories, and how
to assign them to all virtual humans. First, each accessory has a type, e.g.,
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“hat” or “backpack.” We differentiate seven different types, but this number
is arbitrary. In order to avoid the attribution of, for instance, a cowboy hat
and a cap on the same head, we never allow a character to wear more than
one accessory of each type. To distribute accessories to the whole crowd, we
need to extend the following data structures (introduced in Chapter 6):
1. Human template: each human template is provided with a list of acces-

sory ids, sorted by type. Thus, we know which template can wear which
accessory. This process is necessary, since all human templates cannot
wear all accessories. For instance, a school bag would suit the template of
a child, but for an adult template, it would look much less believable.

2. Body entity: each body entity possesses one accessory slot per existing
type. This allows one to later add up to seven accessories (one of each
type) to the same virtual human.
We also create two data structures to make the accessory distibution pro-

cess efficient:
1. Accessory entity: each accessory itself possesses a list of body ids, rep-

resenting the virtual humans wearing it. They are sorted by human tem-
plate.

2. Accessory repository: an empty repository is created to receive all ac-
cessories loaded from the database. They are sorted by type.
At initialization, the previous data structures are filled. We detail this

process in the following pseudo-code:

Algorithm 1: Simulation loop.
begin1

for each accessory in database: do2

load its data contained in the database3

create its vertex buffer (for later rendering)4

insert it into the accessory repository (sorted by type)5

end6

for each human template h: do7

for each accessory a suitable to h: do8

insert a’s id into h’s list l (sorted by type)9

end10

end11

for each body b: do12

get human template h of b13

get accessory id list l of h14

for each accessory type t in l do15

choose randomly an accessory a of type t16

assign a to the correct accessory slot of b17

push b’s id in a’s body id list (sorted by human template)18

end19

end20

end21
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The process of filling these data structures is done only once at initializa-
tion, because we assume that once specific accessories have been assigned to a
virtual human, they never change. However, it would be easy to change online
the accessories worn, through a call to the last loop. Note that a single ver-
tex buffer is created for each loaded accessory, independently of the number
virtual humans wearing it.

Rendering

Since the lists introduced in the previous section are all sorted according to
our needs, the rendering of accessories is much facilitated. We show in the
following pseudo-code our pipeline:

Algorithm 2: Pipeline of execution.
begin1

for each accessory type t of the repository do2

for each accessory a of type t do3

bind vertex buffer of a4

send a’s appearance parameters to the GPU5

get a’s list l of body ids (sorted by human template)6

for each human template h in l do7

get the joint j of h to which a is attached8

get the original position matrix m1 of j9

get the displacement matrix m2 of couple [a,h]10

for For each body b of h do11

get matrix m3 of b’s current position12

get matrix m4 of j ’s current deformation for b13

multiply current modelview matrix by mi ( i=1..4)14

call to vertex buffer rendering15

end16

end17

end18

end19

end20

Although this pseudo-code may seem complex at first sight, it is quite
simple and well optimized to minimize state switches. First, at line (3), each
accessory has its vertex buffer boundary. We can process this way, indepen-
dently of the bodies, because an accessory never changes its shape or texture.
Then, we process through each accessory’s body id list (5). This list is sorted
by human template (6), allowing us to retrieve information common to all its
instances, i.e., the joint j to which is attached the accessory (7), along with
its original position matrix m1 in the skeleton (8), and the original displace-
ment matrix m2 between m1 and the desired position of the accessory (9).
An example with a hat attached to the head joint of 2 human templates is
illustrated in Figure 3.20.
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Fig. 3.21. Left: a human template in default posture. Right: the same human
template playing an animation clip. The displacement of the body, relatively to
the origin (m3), is depicted in pink, the displacement of the head joint due to the
animation clip (m4) in yellow.

Once the human template data are retrieved, we iterate over each body
wearing the accessory (10). A body entity also has specific data that are
required: its position for the current frame (11), and the displacement of its
joint, relatively to its original position, depending on the animation played
(12). Figure 3.21 illustrates the transformation represented by these matrices.

Finally, by multiplying the matrices extracted from the human template
and body data, we are able to define the exact position and orientation of
the accessory (13). The rendering of the vertex buffer is then called and the
accessory is displayed correctly (14).

Empty Accessories

We have identified seven different accessory types. And, through the acces-
sory attribution pipeline, we assign seven accessories per virtual human. This
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number is important and the results obtained can be unsatisfying: indeed,
if all characters wear a hat, glasses, jewelry, backpack, etc., they look more
like Christmas trees than believable people. We need the possibility of having
people without accessories too. To allow for this, we could simply randomly
choose for each body accessory slot, whether it is used or not. This solution
works, but a more efficient one can be considered. Indeed, at the rendering
phase of a large crowd, testing each slot of each body to know whether it is
used or not implies useless code branching, i.e., precious computation time.
We therefore propose a faster solution to this problem by creating empty ac-
cessories. An empty accessory is a fake one, possessing no geometry or vertex
buffer. It only possesses a unique id, similarly to all other accessories.

At initialization, before loading the real accessories from the database, the
following pseudo-code is executed:

Algorithm 3: Pseudo-code of initialization.
begin1

for each accessory type t do2

create one empty accessory e of type t3

put e in the accessory repository (sorted by type)4

for each human template h: do5

put e’s id in h ’s accessory id list6

end7

end8

end9

The second loop over human templates is necessary in order to make all
empty accessories compatible with all human templates. Once this preprocess
is done, the loading and attribution of accessories is achieved as detailed in
Section 3.6.3. This fore introduction of empty accessories causes later their
possible insertion in some of the accessory slots of the bodies. Note that if,
for instance, a body entity gets an empty accessory for hat, reciprocally, the
id of this body will be added to the empty accessory’s body id list. This is
illustrated with an example in Figure 3.22.

One may wonder how the rendering is achieved. If keeping the same
pipeline as detailed in pseudo-code 2 in Section 3.6.3, we meet trouble when
attempting to render an empty accessory. Moreover, some useless matrix com-
putation would be done. Our solution is simple. Since the empty accessories
are the first ones to be inserted into the accessory repository (sorted by type),
we only need to skip the first element of each type to avoid their compu-
tation and rendering. The pseudo-code given in Section 3.6.3 only needs a
supplementary line, which is:

1b skip first element of t.
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Fig. 3.22. Left: a representation of the accessory repository, sorted by type. Each
accessory possesses its own list of body ids. Reciprocally, all bodies possess slots
filled with their assigned accessories. Right: illustrated example of the accessory
slots for body with id 1.

With this solution, we take full advantage of accessories, obtaining varied
people, not only through the vast choice of accessories, but also through the
possibility of not wearing them. And there is no need for expensive tests within
the rendering loop. In Figure 3.23, we show the results obtained when using
accessories in addition to the appearance variety detailed in Section 3.6.2.

Color Variety Storage

In Section 3.6.2, we detail how to apply color variety to the different body
parts of a texture. The same method can be applied to the accessories. A
human texture is segmented in eight body parts, each having its specific color
range. At initialization, for each instantiated virtual human and each body
part, a color is randomly chosen in a range to modulate the original color
of the texture. Since accessories are smaller and less complex than virtual
humans, we only allow for four different parts, i.e., one segmentation map
per appearance set. Then, similarly to the characters, each instance of each
accessory is randomly assigned four colors within the HSB ranges defined for
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Fig. 3.23. Several instances of a single human template, varied through the ap-
pearance sets, color variety, and accessories.

each part. These four random colors also have to be stored. We reemploy the
CLUT used for storing the virtual humans color variety to save the colors of
the accessories. In order not to confuse the color variety of the body parts
and those of the accessories, we store the latter contiguously from the bottom
right of the CLUT (see Figure 3.19). Each character thus needs 8 texels for
its own color variety and 7*4 other texels for all its potential accessories. This
sums up to 36 texels per character. A 1024×1024 CLUT is therefore able to
roughly store more than 29,000 unique color variety sets.

Scalability

We can simulate a high number of virtual humans, thanks to our different
representations. It is important to note that the above description of acces-
sories solves only the case of dynamically animated virtual characters, i.e.,
deformable meshes. However, if we want to ensure continuity when switch-
ing from one representation to another, it is important to also find a so-
lution for the accessories: a hat on the head of a virtual human walking
away from the camera cannot suddenly disappear when the virtual human is
switching to a lower representation. We develop here how to make accessories
scalable.



56 3 Modeling of Populations

First, let us detail how accessories can be scaled to fit rigid meshes. An
accessory has an animation clip of its own, similar to the animation of a
particular joint of a virtual human. If we wanted to simply apply the rigid
mesh principle (see Chapter 6) to accessories, we would have to store an
important quantity of information:

Algorithm 4: Accessories information.
begin1

for each rigid animation do2

for each keyframe do3

for each vertex of the accessory do4

save its new position which is found through the animation5

matrices
save its corresponding normal, which is found through the6

animation matrices
end7

end8

end9

end10

As one can see, this pipeline corresponds to the one used to store the
vertices and normals of a rigid mesh at each keyframe of a defined animation
clip. If we analyze this pipeline, we can observe that there is a clear redundancy
in the information stored: first, an accessory is never deformed, which means
that its vertices do not move, relatively to each other. They can be considered
as a single group transformed by the animation matrices. The same applies to
the normals of the accessory. Second, as detailed in Chapter 6 it is impossible
to store in a database a rigid and an impostor animation clip for each existing
skeletal animation. It follows that creating all the rigid/impostor versions of
an animation clip for each possible accessory cannot be considered.

In order to drastically diminish the information to store for an accessory
in a rigid animation, we propose a solution in two steps: First, as previously
detailed, there is no need to store all the vertices and all the normals at
each keyframe of an animation sequence, since the mesh is not deformed.
It is sufficient to keep a single animation matrix per keyframe, valid for all
vertices. Then, at runtime, the original mesh representing the accessory is
transformed by the stored animation matrices. Second, we can regroup all
accessories depending on the joint they are attached to. For instance, all hats
and all glasses are attached to the head. Thus, basically, they all have the
same animation. The only difference between a pair of glasses and a hat is
the position where they are rendered, relatively to the head position (the hat
is above the head, the glasses in front of it). So, we only need to keep this
specific displacement for each accessory relatively to its joint. This corresponds
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to a single matrix per human template/accessory couple, which is completely
independent of the animation clip played. In summary, with this solution, we
only need:

Algorithm 5:
begin1

for each rigid animation do2

for each keyframe do3

for each joint using an accessory do4

a single matrix representing5

the transformation of the joint at this keyframe6

end7

end8

end9

end10

and

Algorithm 6:
begin1

for each human template/accessory couple (independent of the2

animation) do
a matrix representing the accessory’s displacement3

relatively to the joint4

end5

end6

Scaling the accessory principle to impostors proves to be complicated.
Once again, a naive approach would be as follows:

Algorithm 7:
begin1

for each original impostor animation (without accessories) do2

for all possible combinations of accessories do3

create a similar impostor animation directly4

containing these accessories5

end6

end7

end8
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One can quickly imagine the explosion the memory would endure, even
when starting with only a few original impostor animations. We cannot af-
ford to generate one impostor animation for each possible combination of
accessories. The first possible simplification is to let the unnoticeable acces-
sories disappear. Indeed, impostors are usually employed when the virtual
humans are far from the camera, and thus, small details, taking only a few
pixels, can be ignored. Such accessories would be watches, jewelry, and oth-
ers. Of course, it is also dependent on the distance from the camera where the
impostors are used, and whether such disappearances are noticeable or not.
As for larger accessories, like hats or bags, we are still working to find the
best solution, but this work is in progress, and as of today, we have no finite
solution to expose.

3.7 Final Remarks

This chapter presented some useful techniques in order to create large quan-
tities of realistic virtual humans. The main goal of methods described here
is to generate simultaneously a large number of virtual characters different
from each other, regarding several attributes like colors, materials, texture,
and geometric model of virtual human bodies.
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Virtual Human Animation

4.1 Introduction

While designing an animation engine usable in crowd simulations, several
criteria have to be taken into account: animation computation should be
efficient and scalable, it should allow for variability, and it should be compatible
with levels of detail. To understand the problems, let us take the most
important animation pattern used in crowd simulation, as well as games, i.e.,
locomotion, basically composed of walking and running motions.

The first idea that comes to mind is to generate different locomotion cycles
online for each individual. Unfortunately, even though the engine could be very
fast, we cannot afford spending so much computation time for such a task.
Moreover, some rendering techniques such as billboards or rigid meshes even
request an offline animation stage to prepare the appropriate data structures.

A second approach is to use an animation database. In the present chapter
we focus on the walking pattern with varying speeds. We wish not only to
allow any virtual human to walk with a different speed but also to break the
uniformity of the standard walking pattern by compositing it with secondary
movements such as using one’s cell phone or having both hands in the pockets.
The first step toward this goal is to constitute a database of walking cycles
that will be exploited optimally with the GPU at runtime.

To create such a database, we generate offline many different locomotion
cycles, with varying parameters (e.g., speed and style). Procedural modeling
is one general approach achieving this goal by explicitly linking high-level
parameters (e.g., speed) to the animation parameters (i.e., the skeleton joint
values). This method requires a careful analysis of several real patterns
performed with various sets of qualitative and quantitative motion
characterizations. One of the major difficulties is to find sufficient data, e.g.,
within the biomechanics literature, and to compose them to create complex
coordinated walking [BUT04] or running motions.

An alternate approach is to conduct a motion capture campaign to
systematically record locomotion cycles with a dense speed sampling for
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walking and running and for multiple subjects. Using such raw captured
movements is possible for building the database for crowd animation (once
transformed in joint trajectories). However, we are limited to the captured
speeds and to the style of the original movement performers. It is worth
building a statistical model out of this mass of data to offer a generic
locomotion engine driven by one or more high-level continuous variables.
A typical example of statistically based motion generation method was
introduced recently by Glardon et al. [GBT04]. The method exploits the PCA
(Principal Component Analysis) technique on MOCAP (Motion Capture)
data to yield a reduced dimension space controlled by a quantitative speed
parameter where both interpolation and extrapolation are possible. Moreover,
with proper normalization and time warping methods, the engine is generic
and can produce walking motions with continuously varying human height
and speed. However, despite its good performances (i.e., around 1 ms/cycle
of 25 frames on a 1.5-GHz CPU), its cost is still too important for animating
a large crowd. Nevertheless, it is a very flexible tool for the offline creation of
locomotion databases for any character size, speed, and blend of walking and
running.

The remaining part of the present chapter first provides a state of the art in
locomotion modeling prior to describing a PCA model of locomotion [GBT04].
We then explain how the standard walking cycle can be enriched to introduce
more lifelike variety. The chapter ends by providing some elements about the
steering control to produce arbitrary trajectory in the plane.

4.2 Related Work in Locomotion Modeling

Walking motion synthesis is a central problem due to its strategic importance
in crowd animation. Similarly to [MFCG∗99], we have grouped the various
methods into four families.

4.2.1 Kinematic Methods

Most of the kinematic approaches rely on biomechanical knowledge, and
combine direct and inverse kinematics. They do not necessarily preserve
physical laws and focus on the kinematics attached to a skeleton (positions,
speeds and acceleration of the rigid body parts). During the 1980s, methods
were developed to generate locomotion patterns, driven by high-level
parameters such as step length and frequency. Zeltzer in [Zel82,Zel83] defined
finite state machines to control the synthesized human gait. The states
represent bundle of key-frames which are interpolated to produce a desired
walking motion. Boulic et al. [BTM90, BUT04] proposed a walking engine
built from experimental data on a wide range of normalized speed. It allows
one to animate virtual humans of any size driven by two high-level pa-
rameters: the linear and angular speed. Other kinematic approaches aim at
ensuring that the feet do not penetrate into the ground such as [GM85,
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Gir87,BT92,BC93] for walking and [BC96] for running motions. In [CH99],
the foot position of the support leg is controlled prior to the swing leg. In
addition, a collision avoidance module is used to generate stair climbing
walking. More sophisticated methods offer other motion controls. The method
presented in [SM01] adapts the walk to uneven terrain by deforming original
motion generated in a 2D space of step length and step height parameters.
The original motions are represented in the sagittal plane whose orientation is
progressively modified according to the locomotion direction. Tsumara et al.
[TYNN01] proposed a locomotion well adapted for brisk direction changes, by
handling the next footprint positions. However, the speed cannot be controlled
by the user. Recently, Kulpa et al. have proposed a normalized representa-
tion of movement that allows the inverse kinematic retargeting of locomotion
sequences on various characters and terrains [KMA05].

One of the main drawbacks of these methods concerns their lack of motion
realism. Therefore, physical models improve upon those negative aspects.

4.2.2 Physically Based Methods

The pioneer work of [RH91] exploited the dynamic control of legged robots
to animate simple legged figures. However, it was not able to animate the full
body of a complex character. Controllers have therefore been used in order
to provide the forces and torques to apply to the body parts, according to
given constraints. Hodgins et al. [HWBO95] proposed control algorithms
based on finite state machines to describe a particular motion (running,
bicycling, vaulting), and on Proportional Derivative (PD) servos to compute
the joint forces and torques. This method has been improved by Wooten et
al. [WH96, WH00] allowing the switch from one to another controller for
generating transitions between jump and landing motions, while preserving
balance. In [FvdPT01], the balance is also controlled to generate motions
recovering from a fall. Ko and Badler [KB96] proposed a method which
first generates a locomotion sequence using kinematics. Then dynamics rules
are enforced to improve the animation realism, notably by maintaining bal-
ance with respect to human strength limits. The use of dynamics to con-
trol the motion of an articulated figure is very difficult. On the one hand,
controlling an n DOF body dynamically means controlling n actuators; this
is at least as difficult as, and much less intuitive than, controlling n joints
directly. On the other hand, once a controller has successfully been created,
one can attempt to adapt it to a new context. For example, Hodgins and
Pollard in [HP97] introduced a technique for adapting physical controllers
to different morphologies and skeleton types. For cyclic motion like walking,
Laszlo et al. [LvdPF96] improved the motion stability in a dynamic environ-
ment by adding a closed-loop control to an open-loop system. The closed-loop
control is based on forcing the gait motion back to a stable limit cycle after
a perturbation is applied. The control is achieved by manipulating hip pitch
and roll. Finally, Faloutsos et al. [FvdPT01] proposed a method allowing
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the composition of different controllers in order to generate, still realistic, but
more complex motions by using simpler controllers. The composition can be
performed manually or determined automatically through learning methods
like Support Vector Machine (SVM).

However, the controllers provide at present a relatively narrow range of re-
alistic motions. Therefore, complex composite controllers have to be designed,
capable of synthesizing a full spectrum of human like motor behaviors. In ad-
dition, physically based methods demand too much user assistance with a
high parameter dimension, inappropriate for human animation systems.

4.2.3 Motion Interpolation

The next research direction encompasses techniques combining preexisting
motion data, obtained either through the above-cited methods or through
motion capture. In [UAT95], a motion representation based on Fourier series is
used to compare and quantify a characteristic (tiredness, sadness, joy) between
similar movements. For example, the parameter “briskness” is obtained by the
subtraction of a “normal” walk from a “brisk” walk expressed in the Fourier
domain. Guo and Robergé [GR96] presented another pioneering work which
combines up to four widely differing locomotion cycles, from walk to run
with differing stride lengths, tagged with key events such as “heel-strike”
and “toe-off.” New sequences are generated by linear combinations of locally
time-warped postures within each of the successive subintervals defined by
the key-events.

Other approaches allow a multidimensional motion interpolation over a
wide range of scattered input data. Rose et al. [RCB98] chose an interpola-
tion scheme based on RBF (Radial Basis Function) to produce parametrized
motions. Input motions are first manually classified by activities (“verbs”) and
characterized by a parameter vector. The motion data are then represented by
B-spline control points which model the DOF functions over time. In addition,
the motions attached to a given verb are structurally aligned by using a time
warping process based on [BW95]. To generate a new motion, a combination
of RBF and polynomials is selected and provides the B-spline coefficients cor-
responding to the requested parametrized motion. The polynomial function
provides an overall approximation of the example motion space, while the
RBF locally adjusts the polynomial so as to get the exact example motion
when the user gives its corresponding parameter vector. Sloan et al. [SRC01]
adopted cardinal basis functions for further performance improvements. This
RBF-based technique is incorporated in [PSS02] for online locomotion syn-
thesis and provides weights to be assigned to the example input motions.
New motions are then generated by performing a weighted linear combina-
tion of the example data, using a multiple quaternion interpolation scheme.
Recently, Mukai and Kuriyama [MK05] improved the RBF construction de-
scribed in [RCB98] by defining a specific kernel function for each input motion
according to its characteristics. This approach is based on geostatistics which
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takes into account the correlation between spatial distances and corresponding
control parameters. It results in a more accurate motion interpolation.

Even efficient enough to perform real-time motion synthesis, the above
scattered data interpolation approaches force each input motion to contribute
to the generated motion. On the one hand, it induces a computational effi-
ciency which is dependent on the number of example motions. On the other
hand, the method provides rough results when the user requests parameters
far from the examples as interpolation weights are based purely on the linear
approximation.

Therefore, other methods propose to parametrize motions with fewer ex-
amples. Pettré and Laumond [PL05] proposed to represent motion captured
data into the frequency domain, similar to [UAT95]. The authors use walking
cycles characterized with two parameters: linear and angular speeds. The orig-
inal motions, expressed with Fourier coefficients, are projected into this 2D
parameter space, and a Delaunay triangulation is performed. This approach
is also analogous to the one described in [SM01] where, according to a given
parameter pair, the three nearest neighboring motions can be selected to per-
form a weighted linear interpolation between them. In [KG03], a more general
motion interpolation method is proposed, by addressing the time-warping is-
sue among other problems. A new data-structure, referred to as registration
curve, is introduced. This concept ensures automatically a consistent time-
warping and an alignment of the humanoid root node for all input motions.
In addition, physical constraints of the input motions are appropriately inter-
polated. To obtain a new motion, the user sets weights on manually selected
motion examples. Their attached registration curve allows one to perform a
consistent interpolation, based on the technique explained in [PSS02].

For motion interpolation, the selection of the necessary example motions
over the entire input dataset can be performed automatically. The general
strategy of sampling the space of interpolation was originally introduced in
[WH97], leading to grids of regular samplings in the parameter space. Ac-
cording to a given parameter combination, a region can be determined in
the parameter space and the interpolation is performed between the motions
only included in this area. Other works are based on this strategy. Zordan
and Hodgins [ZH02] generate dense sets of example motions as an aid for
inverse kinematics tasks, while Rose et al. [RSC01] improve the accuracy of
the resulting motions by adding additional samples to parameter space.

Another alternative method has been proposed in [KG04] to select the ex-
ample motions. Given a segment of the motion dataset (“query”), the method
locates and extracts motion segments that are similar, representing the same
action or sequence of action. This search is performed repeatedly, by taking the
extracted segments as new queries. This process finished, the extracted seg-
ments are applied to perform a k-nearest-neighbor interpolation, as suggested
in [ACP02]. This allows one to explicitly constrain interpolation weights to
reasonable values and to project points outside the accessible region of pa-
rameter space back onto it. The animation methods based on scatter data
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interpolation [RCB98,PSS02] produce rough results when the user parame-
ters are far from original input data as the interpolation is purely based on
the linear approximation.

4.2.4 Statistical Models

Some statistical methods have been explicitly exploited for the motion
parametrization problem. For articulated character animation, Brand and
Hertzmann [BH00] used hidden Markov models along with an entropy
minimization procedure to learn and synthesize motions with particular
style. Their appealing method computes automatically structural correspon-
dences and extracts style between motion sequences. This approach, although
impressive, suffers from a complex mathematical framework which is depen-
dent on a specific parametrization. In addition, the animations are not gener-
ated in real time.

PCA is another statistical method used in many fields for decades. This
method is employed as a data compression technique to identify the significant
variations in the data and eliminate the redundancy in the representation. Re-
cently, PCA has been applied to computer graphics topics. Alexa and Mueller
[AM00] applied PCA to represent geometric key-frame animations allowing
an adaptive compression. Special attention has to be drawn for the motion
data representation applied to PCA. When data are 3D joint positions, ve-
locities, or accelerations, PCA can be directly applied, as used in [AFO03]
to reduce the dimension of motion feature vectors. For joint angle measure-
ments which have a non-Euclidean geometry, it is necessary to approximate
them into the Euclidean space by the use of the exponential maps for exam-
ple [Gra98]. In [LT02], PCA is first used to compress these data and then
motion parametrization is performed on the reduced space using the RBF
interpolation technique from [RCB98]. The main interest of this approach
is that each motion example is considered as a point in the PCA space. The
synthesis of idle motions in [EMMT04] is also based on PCA to facilitate op-
erations such as blending and fitting of motions. This allows the production
of small posture variations and personalized change of balance. Safonova et
al. [SHP04] reduced the input data dimension using PCA so as to perform
physically based motion synthesis more efficiently. Troje [Tro02] presented
an approach to parametrized walking motions, represented by 3D marker po-
sitions, with attributes like gender or mood. The method consists in first
applying PCA to each captured datum and then representing it by temporal
sine functions. Finally, a second PCA is applied to all of these dimensionally
reduced motions producing a new space where discriminant functions are used
for determining the contribution of each dimension with respect to attributes.
Despite interesting results, this approach is limited for motion synthesis appli-
cation. First, the data are not represented into the joint angle spaces, inducing
length modification for the body limbs. Second, an attribute change implies
undesired consequences like the locomotion speed modification. Recently, a
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method [GMHP04] based on Scaled Gaussian Process Latent Variable Model
(SGPLVM) allows the mapping from a low-dimensional space (latent space)
to a feature space which characterizes motions (joint angles, velocities, and
accelerations). Hence, a kernel function maps the correlation between postures
according to their corresponding representations in the latent space. Similarly
to the approach in [MK05], the method generalizes RBF interpolation, pro-
viding an automatic learning of all RBF parameters. However, the SGPLVM
technique requires some tuning and optimizations for its use in real-time mo-
tion synthesis based on large motion capture databases.

To summarize, the works discussed above suffer from a number of
limitations, such as a poor capacity of motion extrapolation. To alleviate this
problem, the input motions have to be separated into clusters, according to
their parameters. Hence, the motion interpolation and extrapolation are pre-
cisely performed on those separated clusters, with intuitive and quantitative
high-level parameters, like locomotion speed. Another limitation of the previ-
ous work concerns the motion adaptation to any kind of virtual character. In
the next section, we describe a framework allowing the production of generic
locomotion animations, applicable for various character sizes [GBT04].

4.3 Principal Component Analysis

4.3.1 Motion Capture Data Process

In this section, we propose a PCA space built from angular input data, where
modifying a parameter does not influence other motion characteristics. We
first describe the acquisition process of motion data and then the creation of
a reduced dimension space composed of these data.

As a practical example, our method is explained here using a popular
commercial optical motion capture system1 with a set of 37 markers, illus-
trated in Figure 4.1. Regarding the convention of skeleton modeling, we use
the H-ANIM standard2 that defines common default joint orientations and
a flexible topology for the hierarchical structure (any subset respecting the
parent–child relation is valid). The mapping of marker positions to joint an-
gles is achieved by applying the method described in [MBT99].

4.3.2 Full-Cycle Model

In this section, we introduce our full-cycle model allowing efficient generation
of a whole locomotion sequence only at each high-level parameter update. To
illustrate our methodology, we use two examples of locomotion: walking and
running.

1 Vicon Motion Systems. www.vicon.com, 2004.
2 H-ANIM. Humanoid Animation Working Group. www.hanim.org.
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Fig. 4.1. Front view of the marker set used.

Input Data

To create a motion database, we used a ViconTM optical motion capture
system and a treadmill to record five subjects differing in age and gender
(two women and three men). The physical parameter speed of the various
sequences varies from 3.0 km/h to 7.0 km/h, by increments of 0.5 km/h, in
the case of walking, and from 6.0 km/h to 12.0 km/h, by increments of 1.0
km/h, for running. The sequences were then segmented into cycles (one cycle
includes two steps, starting at right heel strike), and four of them have been
selected.

These cycles are aligned to an identical locomotion direction, converted to
joint angle space (represented by exponential maps) and finally normalized, so
that each sequence is represented by the same number of samples. In addition,
a standing (neutral) position sequence of each subject has been inserted to
represent the speed value 0 km/h. Consequently, the database is composed of
180 walking cycles and 140 running cycles.

Main PCA

In practice, a person’s posture, or body pose, can be defined by the position
and orientation of a root node and a vector of joint angles. A motion can then
be represented by an angular motion vector θ, which is a set of such joint
angle vectors measured at regularly sampled intervals.
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As computing the entire locomotion sequence is time consuming, the PCA
technique is applied, drastically reducing the dimension of the input motion
capture data space. The resulting space, referred to as the main PCA, is
computed with the input motion matrix M composed of all motion vectors θ
from our database with k subjects. To center this space with respect to the
whole dataset, we define θ0 as an average vector of all n motion vectors. The
basis vectors describing this space are the m first orthogonal PCs (Principal
Components) necessary to compute an approximation of the original data.
Letting α = (α1, α2, ..., αm) be a coefficient vector and E = (e1, e2, ..., em)
a vector matrix of the first PCs (or eigenvectors) of M , a motion θ can be
expressed as

θ ∼= θ0 +
m∑

i=1

αiei = θ0 + αE (4.1)

Figure 4.2 depicts the first two αi components of the original walking,
running and standing motions. Note that each point represents the mean
motion of the four cycles for a captured speed. This representation is used for
all other graphs presented in this section.

As mentioned, the purpose of this PCA is to reduce the dimensionality of
the input data. To generate a new and entire motion, a blending technique
could be applied on various α, according to three high-level parameters: per-
sonification vector p, where pi is the weight for subject I, type of locomotion
T (walk or run), and speed S. The fact that original data are mostly nonlin-
ear (exponential map) is not a problem in practice as the limb movements

Fig. 4.2. The motion database in the first two PCs of the main PCA.
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occur mostly within the sagittal plane (i.e., with 1D rotations), therefore al-
lowing linear interpolation. However, blending is not appropriate for motion
extrapolation. The next subsection examines how to address this issue.

4.3.3 Motion Extrapolation

Here, we present a hierarchical structure of PCA spaces allowing extrapolation
in an efficient way for the generation of full-cycle-based locomotion.

Many works [SRC01] use RBF to perform multidimensional scattered data
interpolation. Weights of the example motions for a given parameter vector
are computed via a polynomial and RBF functions. RBF functions ensure
that for a given parameter vector corresponding to an example motion, the
method effectively returns the example motion. The polynomial functions
allow motion extrapolation, and are based on a linear least-squares method.

However, this method presents a negative aspect: all motions are implied
in the computation of a new locomotion. Actually, even if the user desired
to blend only a selected group of example motions, no example motion gets
a zero weight, which costs computation time. Moreover, the extrapolation
of the speed parameter for an existing subject with a locomotion type pro-
duces undesired results, due to the influence of other subjects’ examples.
Figure 4.3 illustrates limitations of the extrapolation, by comparing the
method of [RCB98] and ours, for a running posture at 16 km/h. Note the
difference at the elbows.

Concretely, our method treats the speed extrapolation individually for
each subject and for each type of locomotion. Thus, all example motions αi

have to be treated by group of similarities (subject, type of locomotion) and
then linear least squares can be applied to get the corresponding coefficient
vector α for a given speed S. Here we describe a hierarchical structure of PCA

Fig. 4.3. Polynomial/RBF extrapolation (yellow) and our method (blue).
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spaces that first helps to classify the motions, and second allows a linear least
squares in a very low dimension, instead of in the main PCA space.

Second PCA Level (Sub-PCA Level 1)

The main PCA, as Figure 4.2 depicts, shows relatively compact clusters re-
lated to subjects and type of locomotion. Therefore, simple clustering methods
like k-means can be applied to separate the different subjects. These coeffi-
cient vectors α, computed in the main PCA and grouped by subject, are used
to apply a second PCA algorithm step, leading to new PCA spaces, called
sub-PCA level 1. Therefore, a coefficient vector α relative to a specific subject
v can be decomposed following the formula in Equation 4.1, leading to

α ∼= α0 +
b∑

i=1

βifi = α0 + βFv (4.2)

where β = (β1, β2, ..., βb) represents the new coefficient vector and Fv =
(f1, f2, ..., fb) the b first eigenvectors of the new basis Fv, with b being smaller
than the number of sequences for this subject. The vector α0 represents the
average of all coefficient vectors α for a subject v. By plotting the first two
coefficient values of all β relative to a subject v in Fv, three distinct clusters
clearly emerge, one for each locomotion type. As Figure 4.4 depicts, for all
subjects (they do not have the same PCA space), the first PC separates data
from walking and running, while the standing posture is more considered a

Fig. 4.4. The first two values of the β′s for all subjects in the sub-PCA level 1.
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special case of walking. Here a visualization in the first two PCs is sufficient,
as their eigenvalues explain the most significant variation between the β.

These sub-PCA level 1 spaces are well-suited to extract the high-level
parameter T . The standing posture is integrated in both types of locomotion in
order to give a lower bound (where the speed is null) for the generation of new
motion. Here, interpolation based on blending techniques can be performed
on both types of locomotion, for a subject v.

Third PCA Level (Sub-PCA Level 2)

Again, a PCA algorithm is applied on the coefficient vector of a subject v,
now relative to a type of locomotion, leading to a new space, called sub-PCAs
level 2. For every type of locomotion, two sub-PCAs level 2 are needed in
order to avoid giving too much importance to the neutral posture. Indeed, as
illustrated in Figure 4.4, the distance between this neutral posture and the
walking (or running) cluster is proportionally much bigger than the distance
between the various walking (or running) motions. Therefore, a first sub-PCA
space is computed with coefficient vectors β relative to the standing motions
and to a motion type with minimal speed value (in this case PCA is similar
to linear interpolation), and a second sub-PCA space with coefficient vectors
β relative to all motions of the same locomotion type. Thus, a walking motion
β belonging to the second subspace is defined as follows:

β ∼= β0 +
t∑

i=1

γigi = β0 + γG (4.3)

where γ = (γ1, γ2, ..., γc) is the new coefficient vector and G = (g1, g2, ..., gc)
the c first eigenvectors of the new basis G. The vector γ0 represents the av-
erage of all coefficient vectors γ for a specific subject with a certain type of
locomotion.

This third hierarchy level allows one to determine a relationship between a
coefficient vector and its corresponding speed value. Comparing the coefficient
vector values and their corresponding speed values, as shown in Figure 4.5 for
walking motions and Figure 4.6 for running, a linear relation can be observed.

A linear least-squares fit is performed on the coupled coefficient vector and
speed value S. We want to find a linear approximation function A(S) = γ =
aS + b by minimizing the sum of the square distances between the effective
coefficient values γi and the approximated coefficient values γ, for a given
speed. Equation 4.4 describes this fitting for the p PC over w distinct motions,
differing in speed values:

min
w∑

i=1

(γpi − γ̂pi) = min
c∑

i=1

(γpi − apSi − bp)2 (4.4)
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Fig. 4.5. Speed and the first coefficient vectors γ for all subjects (walking case).

Fig. 4.6. Speed and the first coefficient vectors γ for all subjects (running case).

Thus, a function A(S) is attached to every sub-PCA level 2, allowing
one to generate a coefficient vector γ with speed values S inside and outside
the domain of input data. Figure 4.7 illustrates the result of fitting the data
of a subject for walking and running motions having speed values starting
at the captured minimal speed data (walking 3.0 km/h, running 6.0 km/h).
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Fig. 4.7. Fitting of the coefficient from sub-PCA level 2 (walking and running,
one subject).

Due to the previous successively applied PCA algorithms, the computation
of Equation 4.4 is performed in a single dimension, leading to vector a of one
dimension.

4.4 Walking Model

Our walking engine is driven by two high-level parameters: speed and human
size. First, interpolation and extrapolation are achieved in the PCA spaces
of each subject to generate a motion according to a speed value. Second, a
timewarping method allows one to handle the human height parameter.

4.4.1 Motion Interpolation and Extrapolation

As the walking motions that compose a PCA space differ only at the speed
parameter level, its PCs tend to express the most variance between slow and
fast motions. Therefore, a relationship between a coefficient vector α and its
corresponding speed value is determined in order to allow motion interpolation
and extrapolation.

First the number m of PCs that significantly influence the motion is spec-
ified by taking the first PCs representing 80% of the motion information.
Indeed, as Figure 4.8 illustrates, the contribution of the PCs beyond this
percentage value is small compared to the first m, and probably does not
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Fig. 4.8. The cumulative percentage of the PCs for the five subjects of our database.

provide a relevant relation to speed values. Moreover, this percentage repre-
sents an important dimension reduction factor of the space, appropriated for
our real-time specifics.

Then, the various captured speed values are compared to their
corresponding coefficient vectors α , for each dimension of the PCA space.
The resulting graphs, depicted in Figures 4.9 and 4.10, clearly show a linear
relationship between motions having speed values greater than zero, whereas
the standing posture cancels this linearity. The fitting of a polynomial curve
to these motions is unfortunately unadapted in practice, especially for motion
extrapolation. Hence, two linear functions are constructed and attached to
each dimension.

The first function is a linear least-squares fit performed on the pairs of
coefficient vectors α and their corresponding speed values S, excluding the
speed value zero. Thus, for a given iPC, a linear approximation function Ai(S)
can be Ai = miS + bi over the j increasing speed values is computed by
minimizing the sum of the square distances between the actual coefficient
values αij and the approximated coefficient value dij , as follows:

nbS∑

j=1

(αij − dij)2 =
nbS∑

j=1

(αij − miSi − bi)2 (4.5)

where nbS is the number of speed values. The second function is a simple linear
interpolation between the coefficient vector at null speed value αij and the
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Fig. 4.9. Comparison between the speed values and the coefficient values of the
first PC, for five subjects.

Fig. 4.10. Comparison between the speed values and the coefficient values of the
second PC, for five subjects.

function Ai evaluated at the minimal captured speed value (j = 2). Figure 4.11
illustrates the result of the two fitting functions on a subject.

Therefore, applying the two described approximation functions, it is now
possible not only to interpolate, but also to extrapolate walking motions for a
given speed value. Actually, these functions return a coefficient vector α that
has to be inserted into Equation 4.1 to compute the new generated walking
motion.



4.5 Motion Retargeting and Timewarping 75

Fig. 4.11. The approximation functions (linear interpolation and Ai) relative to
the first two PCs.

4.5 Motion Retargeting and Timewarping

This section explains how the data are retargeted to different human sizes
from those captured, and presents a process, based on motion analysis, to
unwarp the normalized data.

To produce animation adaptable to any kind of virtual humans, the gen-
eralization of the heterogeneous input data we used is an important aspect.
Indeed, we captured various subjects, not only with differences in the style of
motion, but also, and more importantly, differences in size.

First, all 3D positions (i.e., the humanoid root joint) of the motion vectors
are divided by the leg length of the captured subject. Murray [Mur67] has
shown that all the leg flexion-extension angles in the sagittal plane (hip, knee,
ankle) show very similar trajectories for all adult men for the same value of
normalized speed V , obtained by dividing the walking velocity v (in m/s)
by the hip joint height H (i.e., the leg length in meters). We generalize this
statement to the running motion too.

Every input locomotion sequence and also each generated sequence con-
tains a fixed number of frames, due to the normalization step performed dur-
ing preprocessing. The induced timewarp is handled using a walking cycle
frequency function f that links the given normalized speed V to the cycle
frequency f , called the Inman law [IRT81]. We adapted this law to our ob-
servations, performed on a treadmill, and extended it to the case of running
motion. We fit the data to an approximation function of the form axb, simi-
lar to the Inman law. Figure 4.12 illustrates the evolution of the frequencies
with respect to normalized speed, for five subjects captured during walking
and running motion. The resulting frequency functions are described by the
equation
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Fig. 4.12. Approximation of frequency functions for walking and running.

f(V ) = 0.85V 0.4 (4.6)

for walking motions, and by the equation:

f(V ) = 1.07V 0.24 (4.7)

for running motions.
Therefore, the animation engine is able to continuously vary the speed and

compute the phase ϕ update as in the walking engine in [BTM90,BUT04],
where the phase varies between [0...1] and the phase update is computed with
the equation

Δϕ = Δtf(V ) (4.8)

where Δt is the elapsed time between two posture updates and V the normal-
ized speed. The phase ϕ multiplied by the number of frames in the normalized
sequences returns the frame to display.

4.6 Motion Generation

The goal of our full-cycle method is to allow the end-user to set some high-
level parameters: a personification vector p composed of weights assigned to
each subject, the type of locomotion T , the speed S, and the human size (i.e.,
the leg size H).
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Fig. 4.13. Diagram of the hierarchical structure of the PCA spaces.

After the preprocessing work, consisting in the construction of all
hierarchical PCA spaces, the input data are structured as follows. First the
main PCA space is computed with the motion database M . Second, n sub-
PCA spaces level 1 are formed for the n subjects expressed in the first PCA
space. Finally, for each type of locomotion in the n subspaces, two new PCA
level 2 subspaces are created, one containing the standing posture, and the
other with motions captured at various speeds. Figure 4.13 illustrates this
structure. This hierarchical data structure helps us to generate new motion
according to the three high-level (or end-user) parameters: S, T, and p. This
process is explained in the next subsections.

4.6.1 Speed Control

We start with the lowest level of our hierarchy, namely, sub-PCA level 2 spaces
where a function A(S) maps speed S onto coefficient vectors γ, allowing
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extrapolation. For each subject, the sub-PCA level 2 spaces including the S
value return a coefficient vector β. In our case, two vectors β, one for walk-
ing and one for running, characterize each subject for the same (normalized)
speed.

4.6.2 Type of Locomotion Control

After setting the speed S, the type of locomotion parameter T has to be
taken into account. This parameter varies from 0 (pure walking type) to 1
(pure running type), allowing the end-user to generate hybrid motion between
walking and running. For each subject, a linear interpolation between both
coefficient vectors β (computed in child PCA level) is performed, with respect
to the parameter T . This interpolation is possible because both vectors are
expressed in the same sub-PCA level 1 space. Then, this vector is computed
in the main PCA space, to get a coefficient vector α that corresponds to a
specific speed and type of locomotion for a given subject.

4.6.3 Personification Control

The last high-level parameter, the personification vector p, lets the user assign
weights to the various input subjects, to produce a new generated motion
with different style characteristics. For this purpose, the subject’s coefficient
vectors α are interpolated with normalized weights pi and the motion vector
θ can finally be computed. In addition, the translation of root joint is scaled
according to the leg size, and is added to a global horizontal translation.

This motion generation scheme clearly encompasses motions that are only
concerned with the given high-level parameters. Indeed, for a pi = 0, its
corresponding subject is ignored by the computation process.

4.6.4 Motion Transition

The transition between different motions is an important problem in com-
puter animation. We do not need to capture motion transition as presented
in [PhKS03]. In our case, the difficulty has been solved as follows: the basic
idea is to perform a transition between two motions having a different type of
locomotion, but the same speed, as our hierarchical PCA structure operates.
Moreover, as the motions are normalized, cut into cycles and have similarities
in postures (family of cyclic locomotion), we ensure that, at a specific frame
i for walking, the nearest frame is also i for running. Therefore, it is possible
to perform seamless transitions between different types of locomotion, where
the user gives a specific transition duration in seconds. Additionally we lin-
early interpolate the walking and the running frequency, according to the T
variable.

In practice, any change in a high-level parameter leads to a recomputation,
as described above. To optimize this process, the interpolation parameter rela-
tive to each high-level parameter are combined in the lowest PCA level, whose
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dimension is strongly reduced compared with other spaces. Then, for upper
levels, only additions between data are needed, eliminating the multiplication
of interpolation parameters. Moreover, if one of the interpolation parameters
is null, no addition is made, improving the performance when many weights
pi are null.

4.7 Results

We apply our hierarchical PCA method to our walking and running motion
database. The sequences have been recorded at 120 Hz and normalized to 100
frames containing animations of 78 DOFs. The total size of the database is
25 MB. The first PCA is composed of the first 10 PCs (from over 380 PCs,
coming from the 17 different motions in four examples, for the five subjects)
representing 97% of all the information data. Next, each subject determines
a sub-PCA level 1, with the first two PCs, representing on average 95% of
the data information. Finally, sub-PCAs level 2 are computed, leading to a
space of one dimension, as summarized in Table 4.1. The resulting size of
data required to recompute a motion is 1 MB, therefore compressed with a
factor of 25. Additionally, the approximation functions that fit normalized
speed to coefficients of the sub-PCA level 2 spaces are computed, as well as
the frequency functions for walking and running. All the operations described
above are computed in a preprocessing phase. In the execution phase, a human
skeleton based on the H-ANIM hierarchy is animated according to the high-
level parameter values, which the user can change in real time: the different
weights for personification, speed, type of locomotion, and leg length

Extrapolation and interpolation of walking motion can be performed from
0 km/h up to 15 km/h, as shown in Figure 4.14(right). Beyond this value,
undesired behavior occurs at the skeleton level, especially when the arms reach
the head level. Another effect is that the double support phase is no longer
ensured. Running motions can be generated with speed from 0 km/h until 20
km/h, illustrated in Figure 4.14(left). Beyond this value, other effects occur,
which are different from those met in the case of walking. Indeed, the feet are
sliding on the floor, although it is difficult for the human eye to catch this
effect at such speed values. But this problem can be solved by introducing
constraints at the feet joints.

Transitions between walking and running (and inversely) are smooth,
changing the dynamics of the movements and the arms trajectories, which

Table 4.1. Dimension of the PCAs

PCAs Name #PCs Data% Reduction Factor

Main PCA 10 97% 38

Sub-PCAs level 1 2 95% 5

Sub-PCAs level 2 1 95% 2



80 4 Virtual Human Animation

Fig. 4.14. Postures at identical moment in the walk cycle, with two different skele-
ton sizes. From left to right: 2.0, 4.0, 6.0, 8.0, and 10.0 km/h.

are higher in running. Personification is less easy to exploit, as we only
captured natural walking motions and not exaggerated ones such as lazy,
happy, or impulsive.

Personification can be obtained by mixing the different weights associ-
ated with the captured subjects. The new stylized motion is preserved over
the speed range and locomotion type because the hierarchical PCA struc-
ture decouples speed, type of locomotion, and style control along mutually
orthogonal dimensions.

In terms of performance, 13 seconds is necessary for the preprocess-
ing phase. During the animation using the described data (i.e., 360 cycles
composed of 100 frames), the updating for the generation of a new motion
is interactive, with a computation time within 1.5 ms on a CPU 1.8-GHz
machine. As our full-cycle method computes the entire cycle at each update,
one frame is updated in 15 ms. If the weight vector is set for one subject only,
the update per cycle decreases to 1.3 ms. We tested our method with sparse
data on two subjects each having three walking and two running motions
(i.e., 40 cycles). The input data being very low, the update time is 0.7 ms.
These values are similar to other existing methods based on frame-by-frame
generation.

Scaling the human size directly influences the cycle frequency in order to
preserve motion properties. In the case of two humans of different heights, the
smaller one walks with a higher frequency for an identical motion speed.

This engine allows generating locomotion cycles, parametrized by a few
user-defined values as shown in Table 4.2:

Table 4.2. PCA space information for each subject

Subject ID #PCSs for 80% of Whole Data Reduction Factor

1 3 13

2 3 13

3 2 20

4 4 10

5 3 13
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1. Speed: the speed at which the human moves,
2. Style: a value between 0 and 1, 0 being a walk motion, 1 being a run

motion,
3. Personification: a weight to blend between the five different locomotion

styles of five different motion captured people.

Note that when such a engine is fully integrated into a crowd framework,
it is possible to generate many different locomotion cycles by simply varying
the above parameters, thus making each individual unique. This engine has
been extended for handling curved walking [GBT06b] and dynamic obstacle
avoidance [GBT06a].

4.8 Animation Variety

We have used the PCA locomotion engine described in the previous section to
generate over 100 different locomotion cycles per human template exploited
in the crowd. For each of them, we sample walk cycles at speeds varying
from 0.5 m/s up to 2 m/s and similarly for the run cycles between 1.5 m/s
and 3 m/s. Each human template is also assigned a particular personifica-
tion weight so that it has its own style. With such a high number of ani-
mations, we are already able to perceive a sense of variety in the way the
crowd is moving. Virtual humans walking together with different locomotion
styles and speeds add to the realism of the simulation. Once provided with
a large set of animation clips, the issue becomes to store and use them in
an efficient way. Chapter 7 presents details as to how the whole data are
managed.

4.8.1 Accessory Movements

Variety in movement is one necessary condition for achieving believable syn-
thetic crowds as individuals are seldom unrolling the sole locomotion cycle
while moving from one place to another. The upper limb movements not
being compulsory in locomotion, hands are most of the time exploited for
accessory activities such as holding an object (cell phone, bag, umbrella, etc.)
or are simply protected by remaining in the pocket of some clothing (see
Figure 4.15). These activities constitute alternate coordinated movements
that have to match the continuously changing constraints issued from the pri-
mary locomotion movement. Indeed, constantly reusing the same arm posture
through the locomotion cycle leads to a loss of a believability; for example,
a hand “in the pocket” should follow the pelvis forward–backward movement
when large steps are performed. For these reasons, a specific animation cycle
has to be defined also for an accessory movement that is to be exploited with
locomotion.
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Fig. 4.15. Examples of accessory movements (hand in the pocket, phone call, hand
on hip).

We achieve the accessory movement design stage after the design of the
individual locomotion cycles for a set of discretized speeds. We exploit a Pri-
oritized Inverse Kinematics solver that allows combining various constraints
with a priority level if necessary. The required input is:

1. The set of locomotion cycles,
2. One “first guess” posture of the hand and arm, possibly with the clavicle,

designed with the skinned target character,
3. The set of “effector” points to be constrained on the hand or arm (see

Figure 4.16, the three colored cubes on the hand),
4. For each effector, its corresponding target goal location expressed in other

local frames of the body; for example, relative to the head for a cell-phone
conversation, or to the pelvis and thigh for a hand in a trousers’ pocket
(see Figure 4.16, the three corresponding colored cubes attached to the
pelvis),

5. If an effector is more important than the others, the user can associate it
with a greater priority level. Our solver ensures that the achievement of
other effectors’ goals does not perturb the high-priority one [BB04].

All the additional elements to the original locomotion cycles can be spec-
ified by an animator by locating them on the target character mesh in a
standard animation software. The resulting set of parameters can be saved in
a configuration file for the second stage of running the Inverse Kinematics ad-
justment of the posture for all frames of the locomotion cycles (Figure 4.17).
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Fig. 4.16. Set of controlled effectors attached to the hand (A) and corresponding
goal positions attached to the pelvis (B).

Fig. 4.17. Overview of the two-stage process for producing accessorized locomotion
cycles.

The resulting accessorized locomotion cycles are saved in files for a further
storage optimization stage described in Chapter 7. Figure 4.18 shows succes-
sive postures from such a movement.
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Fig. 4.18. Example of posture from an accessorized locomotion cycle.

4.9 Steering

4.9.1 The Need for a Fast Trajectory Control

Steering is the capacity to alter the linear and angular speed over time to
achieve various types of trajectory control (e.g., seek, avoid, group movements,
etc.). This is an essential function for the management of displacements in
complex environments. A prior theoretical work has demonstrated that the
shortest path to an oriented goal is made out of linear segments and an-
gular arcs [Dub57]. However, such an approach leads to discontinuities in
curvature that are not acceptable for human locomotion trajectories. Other
approaches have exploited Bezier curves [MT01,PLS03] or more elaborated
continuous trajectories [LL01,FS04]. However, this comes with a significant
cost that precludes their application to a significant number of moving enti-
ties. On the other hand, alternate approaches rely on an instantaneous update
of the linear and angular speeds without evaluating the trajectory up to the
goal. For example, the major steering behaviors of generic mobile entities
have been described in detail by Reynolds [Rey99] in a general game con-
text. Some other studies have focused on specific applications with mobile
robots [AOM03], exploited potential fields [LL95, BJ03, MH04], or relied
on precomputed data [Bou05b,Bou05a] or trajectory segments in [GTK06].
More elaborate planning approaches exist (e.g., [CK04, GBT06a]) but they
are not compatible with the low computing cost requirement addressed in this
section. We now recall the seek behavior and how it can be extended to achieve
a desired orientation at the goal location (funneling control).

4.9.2 The Seek and Funneling Controllers

The seek controller simply ensures reaching a desired target position without a
prescribed orientation at that position (Figure 4.19(left)). One way to proceed
is to progressively cancel the angle α made between the forward direction
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Fig. 4.19. The radial-tangential seek angle α is the angle made by the seek trajec-
tory with the radial direction at the target position.

and the radial direction that points to the target. In other words, the radial
direction can be considered as the heading direction for the seek controller.
Our control scheme differs from [Rey99] in the sense that we only allow
bounded accelerations and speeds. The two PD controllers exploited in the
seek mode are:

1. The angular speed controller drives the scalar angular acceleration
aiming to align the forward direction with the heading direction (Figure
4.19(right)). The acceleration is proportional to the direction error α; a
damping term smoothens high-frequency variations.

2. The forward speed controller has an implicit lower priority compared
with the angular control; it controls the scalar forward acceleration aim-
ing to achieve the relaxed desired forward speed compatible with a given
maximum normal acceleration [Bou05a].

In the seek mode, when the mobile entity reaches the target, one can
easily observe the angle η made by the tangent at the target with the initial
radial direction (Figure 4.19(left)). This angle is called the tangential-radial
angle. The main characteristic of the funneling controller is to modulate the
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heading direction so that a desired final orientation is achieved at the target
position (Figure 4.19(right)). The modulation is a function of the angular
difference Δη between the desired direction and the tangential direction
that would be obtained with the simple seek controller. Each update of the
control requests only to estimate the η angle and to derive the heading direc-
tion modulation μ (Figure 4.19(right)). This makes the method extremely fast
and flexible if the angle η is precomputed for a sufficiently dense sampling of
goal positions in the mobile entity coordinate system. For example, [Bou05b]
evaluates this angle for goals expressed in polar coordinates (10 distances
D × 10 angles α per side hemisphere) and for a reasonable sampling of the
current speed (9 angular speeds × 8 linear speeds) and the desired linear speed
(6 levels). Altogether 43,200 η angles are stored in a 5-entry table noted Tη
for a storage cost of 0.5 MB. A reachability Boolean is also stored in the
same table to characterize the difficulty of reaching each goal.

The funneling control exploiting such a table Tη is detailed in [Bou05b].
One control update cost is reasonably low with 12 ms on average on a Pentium
IV, even for a moving goal. The resulting trajectories have a coherent curva-
ture behavior in the neighborhood of the goal as opposed to Bezier curves
where the curvature increases when the distance increases (while keeping the
same tangent lengths) [Bou05a]. Figure 4.20 illustrates the trajectories ob-
tained for 42 mobile entities starting from the same point on the left side and
that have to walk through individual oriented targets with a desired linear
speed. Each target can have a different position tolerance (red circle) and ori-
entation tolerance (small triangle). The trajectories are smooth and display a
plausible local curvature near the goal.

Fig. 4.20. Funneling control of 42 mobile entities that have all started simultane-
ously on the left side with the same initial linear speed (no collision management).
The relative position and orientation of the lower left goal leads to a different type
of access trajectory.
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4.10 Final Remarks

This chapter provided discussions concerning methods for animation of vir-
tual humans in the contexts of crowds. In order to deal correctly with crowd
animation, we should analyze it in the perspective of human animation and
locomotion. Several methods have been discussed in order to propose solutions
to this important challenge.



5

Behavioral Animation of Crowds

5.1 Introduction

One of the important characteristics of behavioral animation is its ability to
reduce the workload on the animators. This is achieved by letting a behavioral
model automatically take care of the low-level details of the animation, freeing
the animator to concentrate on the big picture. Freeing the animator from low-
level animation details is even more important when dealing with crowds. An
animator manually creating a crowd animation is overwhelmed not only by
the large number of animated entities, but also by the interactions between
them.

For instance, manually animating ten human characters walking in a room
requires more than ten times the work of animating a single character walking
in a room, because the animator must deal with new problems like the possibil-
ity of collisions between characters. This observation reinforces the importance
of research on behavioral animation models for crowds. Indeed, the entire field
of behavioral animation has its origins strongly connected to crowds. This can
be seen in the next section, where a review of the field is presented. Section 5.3
describes two behavioral models for crowds that have been successfully used
in crowd simulations. Then, Section 5.4 discusses crowds navigation, which is
one of the most important behaviors for crowd simulations.

5.2 Related Work

The seminal work by Reynolds [Rey87] is considered by many the first one
in the field of behavioral animation. It presented a method to animate large
groups of entities called boids, which present behaviors similar to those ob-
served in flocks of birds and schools of fishes. Reynolds started from the
premise that the group behavior is just the result of the interaction between
the individual behavior of the group members. Therefore, it would suffice
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Fig. 5.1. Snapshot of simulation based on the boid model [Rey87]. (Courtesy of
Craig Reynolds)

to simulate the reasonably simple boids individually, and the more complex
flocking behavior would emerge from the interaction between them.

The boid model proposed by Reynolds consisted of three simple rules:
(i) avoiding collisions with other boids, (ii) matching the velocity of nearby
boids, and (iii) flying toward the center of the flock. Results presented by
the author (Figure 5.1) demonstrated that, as he originally expected, the
interaction between creatures whose behavior was governed by these three
simple rules leads to the emergence of a much more complex flocklike behavior.

Tu and Terzopoulos [TT94] created a realistically rich environment inhab-
ited by artificial fishes, as depicted in Figure 5.2. The complexity of the un-
dersea life, including interactions between fishes like predators hunting preys,
mating, and schooling, was obtained by modeling the behavior of individual
fishes: group behaviors emerged as the individuals interacted. In this sense,
this work is similar to the work by Reynolds discussed in the previous para-
graphs.

Fig. 5.2. Simulated undersea environment [TT94]. (Courtesy of Demetri Terzo-
poulos)
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It must be emphasized, though, that the artificial fishes created by Tu
and Terzopoulos are much more complex than the boids created by Reynolds.
The body of each fish, for instance, is modeled as a spring–mass system.
Some of the springs represent muscles, which can be contracted in order to
produce movements like a swinging tail. The fishes locomotion is the result of
a hydrodynamics model that takes into account, for example, the volume of
water displaced as the artificial fish swings its tail. Fishes’ sensing capabilities
include models of vision and temperature sensing.

Concerning the behavioral model, the simulated fishes are also much more
complex than the boids. Their internal state includes variables hunger, libido,
and fear, and also some “habit parameters,” indicating whether they prefer, for
instance, cold or warmth. The fishes’ intentions are generated by an algorithm
that uses all these aspects (in addition to senses) to produce its output. The
actual execution of the generated intentions in the virtual environment is
performed by “behavior routines,” which specify which low-level actions must
be executed by the fish in order to fulfill its intention.

Going even further in the direction of using more realistic models of the
simulated entities, Brogan and Hodgins [BH97] described an algorithm to
control the movements of entities with “significant dynamics” that travel in
groups. By “significant dynamics,” the authors mean that the work is focused
on simulating systems whose dynamics are complex enough to have a strong
impact on the motion of the simulated entities. For example, one of the case
studies presented by the authors simulates the dynamics of one-legged robots,
which move by jumping. These robots have “significant dynamics” because
they cannot intentionally change their velocity during a jump, while they are
not in contact with the ground. Besides the one-legged robots, the authors
also present results with simulations involving bicyclists modeled as a hier-
archy of rigid bodies connected by joints, and a simple point-mass system.
Unlike the other two studied systems, the point-mass system does not have
complex dynamics, and was added to the experiments in order to help in the
understanding of the impact of dynamics in the performance of the algorithm.
Two screenshots of the results presented in this work are shown in Figure 5.3.

Fig. 5.3. Groups of one-legged robots and bicyclists [BH97]. (Courtesy of David
Brogan and Jessica Hodgins)
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The algorithm for group behaviors described in this work is divided in two
parts: perception and placement. Perception works by allowing a simulated
entity to sense the relative position and velocity of the entities near it, and
also static obstacles. The placement part of the algorithm works by computing
a desired position for an entity, given the other visible entities and obstacles.
This high-level perception and placement algorithm is common among all
three simulated systems, but the lower-level details differ: each of them has
a specific control system, which translates the desired position to a desired
velocity, and actuates in order to achieve this desired velocity in the most
efficient way that obeys the dynamics of the simulated entity.

Crowds of human agents simulated in real time were explored by Musse
and Thalmann [MT01], in a work that addressed both crowd structure and
crowd behavior. The crowd is structured in a hierarchy with three levels: the
crowd itself, groups, and individuals. Some crowd parameters can be set at
higher levels of the hierarchy and are inherited to lower levels. It is possible,
though, to redefine these parameters for some specific structure at a lower
level. This enables, for instance, to easily create a simulation scenario in which
there exists a single sad group in a happy crowd: it just requires setting the
emotional status of the crowd to “happy,” and redefining the emotional status
of the desired group to “sad.”

The adoption of groups in the model also allowed optimizing the system
so that real-time performance could be achieved with large crowds. In fact,
groups are the most complex structure in the model: group members share
the decision process (and most of the information necessary for the decision
process) that is used to define the actions performed during the simulation.
Optionally, groups can have sociological effects enabled. If this is the case,
more complex behaviors like group splitting and changes of the group leader
can arise during the simulation.

Regarding crowd behavior, the authors proposed a model with three dif-
ferent levels of autonomy: autonomous, scripted, and guided. An autonomous
group behaves responding to events, according to behavioral rules written by
the animator. Scripted groups behave according to scripts that explicitly de-
fine the actions to be performed during the simulation. Finally, guided groups
are interactively guided by the user as the simulation runs. Figure 5.4 shows
a snapshot of a simulation based on this model.

Fig. 5.4. Crowd simulation in a train station [MT01].
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Fig. 5.5. Crowd entering a mosque [UT02].

Another model for simulating crowds of virtual humans was presented by
Ulicny and Thalmann [UT02]. Unlike the previously described model, this
one focuses on individual agents, instead of groups. The behavioral model is
composed of three levels. The highest level is composed of a set of rules. Each
rule has an antecedent part (that specifies which agents are allowed to use the
rule and under which circumstances) and a consequent part (that describes
the effects of firing the rule). Execution of rules can change the current agent
behavior, change the agent attributes, or trigger events.

The current agent behavior is performed at an intermediate level, in which
every possible behavior is implemented as a finite state machine (FSM) that
drives the low-level actions for the virtual human. Finally, path-planning and
collision avoidance are performed in the lower model level. A screenshot of a
simulation based on this model is shown in Figure 5.5.

5.3 Crowd Behavioral Models

Ideally, a behavioral model for crowds should be both realistic and efficient,
that is, it should be able to simulate crowds with a very large number of
agents efficiently enough to cause just a minor impact in the application’s
frame rate. In practice, however, there is usually a trade-off between realism
and efficiency, and hence the characteristics of behavioral models for crowds
vary greatly depending on their intended application.

In this section, two behavioral models that have been successfully used to
simulate crowds are described. The first one was developed for a real-time,
interactive application that imposed strong performance constraints. Thus,
the model strives to be efficient, while still being realistic enough for the
purposes of its application. The second model presented is physically based,
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requiring a great deal of computational resources to run. This makes the model
unsuitable for simulating large crowds in real time with current hardware.

5.3.1 PetroSim’s Behavioral Model

PetroSim [BdSM04] is a system for simulation of evacuations of outdoor ur-
ban areas in real time. It was developed in cooperation with Petrobras, the
Brazilian Petroleum Company, which has installations near inhabited areas.
PetroSim was designed as a tool to help safety engineers in tasks like the im-
provement of existing evacuation plans and the evaluation of the safest place
to build new potentially dangerous installations in populated areas. The na-
ture of PetroSim required its behavioral model to be able to simulate the
common behaviors found in emergency situations, yet be efficient enough to
allow the simulation (and visualization) of crowds of hundreds of agents.

In order to simplify the simulated agents, most of the geographic knowledge
necessary during the simulation is stored in the environment itself, and can
be queried by agents as needed. Every simulated agent is an autonomous
entity, described as triple of information containing knowledge, status, and
intentions. The agent modeling and the decision process are detailed below.

Knowledge

The knowledge of an agent is composed by information computed in real time
or obtained from the environment:

• Environmental information obtained from the environment. This in-
cludes the location of important places (like refuges or crowded locations)
and possible paths between different places.

• Perception of nearby agents: position and status.
• Perception of regions affected by an accident, i.e., regions that

should normally be avoided.

Agent’s perception (of other agents and the accident) is computed in real
time. Everything within a perception radius is perceived.

Status

The agent status contains information that is predefined before the beginning
of the simulation and can change as a consequence of triggered events (e.g.,
an agent can get injured by the accident). The following items are part of the
status:

• Agent profile, which defines the different behavioral profiles that can be
observed in emergency situations. Three profiles were used in PetroSim:
(i) normal agents, which are mental and physically capable of evacuating
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a region in the event of an accident; (ii) leaders, which try to help other
agents during dangerous situations; and (iii) dependent agents, which
cannot walk long distances without the help of another agent.

• Consequences of accident, which measures the degree of injury an agent
has suffered.

• Situation, which can be “normal life,” “danger,” or “safe,” which repre-
sent the periods before, during, and after the dangerous situation.

Intentions and Decision Process

An intention is a high-level goal that an agent is committed to achieve. The
intentions of an agent are generated from its knowledge and status. A premise
of PetroSim is that an agent has exactly one intention at any given time. As
explained later in this section, this premise is assured to be respected by the
use of finite state machines (FSMs) to model the behavior of agents.

The behavioral architecture should provide means to express that certain
sequences of intentions are natural under certain circumstances. A leader,
for instance, could start with the look for people needing help inten-
tion. After gathering some dependents, the leader is expected to eventually
change its intention to go to safe place. And, just after arriving at the safe
place, the leader’s intention should change to leave dependents on safe

place.
It turns out that the decision-making process cannot be entirely linear as

just described. For instance, after leaving the dependents on the safe place,
two different intentions could be allowed: stay on safe place or, again,
look for people needing help.

As stated before, in this model an agent has exactly one intention at any
given time. This allows one to represent the decision-making process as an
FSM where each state corresponds to an intention. Transitions between states
are triggered by verifying if certain conditions (based on the knowledge and
status of an agent) hold. A concrete example of an FSM used in PetroSim is
given in Section 5.3.1.

Because intentions are high-level goals, they must be translated to low-
level actions that can be executed by an agent. Therefore, we describe an
intention by three components: movement, animation, and interaction (col-
lectively, MAI).

Movement specifies locomotion from the agent’s current location to an-
other place. The possible movements are none, go to safe place, go to

crowded place, follow leader, go to place near accident, go to

random place, and go to place indicated by leader. Definitions of
which places are considered “safe” or “crowded” are obtained from the envi-
ronment.

The implementation of movements is based on Reynolds’s steering be-
haviors [Rey99]. Data like typical walking speeds were based on Fruin’s
work [Fru87].



96 5 Behavioral Animation of Crowds

Animation describes some visual indication of the current actions of an
agent. This is passed directly to the visualization module, which is responsible
for displaying it. none, shout, wave, call, look around, and fall are
the valid animations.

Interaction specifies any kind of behavior that involves other agents. The
possible interactions are leave dependents (e.g., if a leader successfully
led a group of dependents to a safe place), gather dependents (e.g., if a
leader is searching for people needing help), start following, and stop

following.
Each intention is associated with a set of MAIs. This reflects the fact that

there may be various distinct ways to execute a given intention. Whenever
an agent decides to execute an intention, it randomly chooses one of the
MAIs associated with it. This feature is an easy way to add diversity to the
simulation.

Consider, for example, the intention look for dependents, which
is typically performed by leaders trying to locate people needing help. It
could be described by 〈go to crowded place, wave, gather depen-

dents〉, 〈go to crowded place, shout, gather dependents〉, and
〈go to place near accident, shout, gather dependents〉, among
others.

Simplifying the FSMs

It is certainly possible to design a single, large FSM capable of representing
all possible intentions for all possible agents. Such FSM, though, would be
difficult to understand and modify. The solution to this problem is to use
several simpler FSMs.

The two factors with most relevance to the behavior in PetroSim are the
agent situation (normal life, danger, or safe) and its profile. Based on these
two attributes (situation and profile), we defined a decision tree (shown in
Figure 5.6) whose task is to select which FSM shall be used for a given agent.
Other implementations of this model can use different decision trees.

Fig. 5.6. The decision tree used to select an FSM. Leaves represent the FSMs used
to model the behavior of agents.
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An Example of FSM

As a concrete example, we now describe the FSM used by agents with the
“normal” profile when the situation is “danger.” This FSM is represented in
Figure 5.7.

The initial state, zombie, does not represent a real intention. It is just an
artifice used to create an FSM with a single initial state when two or more
intentions can be considered sensible initial intentions. At any time, at least
one of the transitions leaving the state zombie is guaranteed to be active.
Therefore, an agent leaves this state as soon as possible and enters a state
representing a real intention.

In this example, a normal agent entering a danger situation can have two
different intentions: it can follow a leader or seek a safe place alone. These
two possibilities correspond, respectively, to the states follow leader and
go to safe place. Depending on the occurrence of certain events (discussed
later in this section), an agent can change from one of these states to the other
one. In a successful evacuation, a leader will eventually indicate a safe place
where its followers are expected to stay. The intention to go to this meeting
point and stay there is represented by the state stay in indicated place.
Similarly, a normal agent heading to a safe place without the help of a leader
will eventually arrive on the refuge. Once there, its intention will be to stay
there. The state stay in safe place represents this.

Each transition between states is implemented as an expression that can
be true or false depending on the status and the knowledge of the agent in
question. When deciding the next intention for a given agent, we sequentially
evaluate the expressions corresponding to the transitions leaving the current
state. This sequence of evaluations is stopped when the first expression with
a true value is found. In this case, the transition is executed and the FSM
changes its current state (that is, the agent changes its intention). If all ex-
pressions evaluate to false, the agent remains with the same intention.

Concerning what can be used to construct these expressions, each agent
has a set of flags that can be directly accessed in the expressions. These flags,
which reflect aspects of the agent’s status and knowledge, are listed below:

• leader perceived: is true when at least one agent with the leader profile
is being perceived.

Fig. 5.7. The FSM used by normal agents when the situation is “danger.” States
(i.e., intentions) are represented as rectangles; the initial state has a thicker border;
arrows indicate possible state transitions (i.e., changes in the agent intention).
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• dependent perceived: is true when at least one agent with the depen-
dent profile is being perceived.

• leader indicated place: is true if the leader that was being followed
indicated a place to the agent stay.

• abandoned by leader: is true if the leader that was being followed
“abandoned” the agent. As implemented, this happens only if the leader
dies as a consequence of the accident.

• at safe place: is true if the agent is currently at a safe place.
• at goal: is true if the agent is currently at the end of the path it was

following.

Apart from these flags, the only information used in the expressions are the
constant “true,” the connectives and and or, and the RandBool(p) function,
which returns true with probability p and false otherwise.

In the FSM used as example, the following expressions are used (the num-
bers correspond to the labels of the transitions in Figure 5.7):

1. leader perceived and RandBool(0.1)
2. True1

3. abandoned by leader

4. leader perceived and RandBool(0.01)
5. leader indicated place

6. at safe place

Results

PetroSim was tested running simulations in the village of São José, in the state
of Rio Grande do Norte, Brazil, where about 350 people live near Petrobras
installations. The behavioral model was capable of generating the behaviors
expected during evacuations, and the simulations allowed verification, for in-
stance, of the impact of adding more trained leaders to help the population
during an emergency. A snapshot of running simulation is shown in Figure 5.8.

To evaluate the performance of the behavioral model, two sets of sim-
ulations were run, using various numbers of agents. The first set of sim-
ulations used the complete PetroSim system, that is, both behavior and
visualization were enabled. The second set of simulations had only visual-
ization enabled. Comparing the two sets of simulations allows inferring the
performance of the behavioral model. These experiments are summarized in
Figure 5.9.

1 Recall that, at any given time, at least one of the transitions leaving the zombie

state must be true. If transition 1 is not used (because its expression evaluated
to false), transition 2 is certainly going to be used.
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Fig. 5.8. Evacuation simulation in PetroSim.
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Fig. 5.9. Graphics showing PetroSim’s performance on a system based on a
Pentium 4 processor at 3 GHz, with 1 GB of RAM and a GeForce FX 5900 GPU.

5.3.2 A Physically Based Behavioral Model

Our second example of behavioral model was proposed by Braun et al. [BMB03,
BBM05]. It is designed as a parametric model for simulation of crowd evac-
uations from internal environments including several rooms and obstacles,
in which a hazardous event such as smoke or fire propagates. This model is
based on the model originally described by Helbing et al. [HM95,HFV00], and
already discussed in Chapter 2.

Helbing’s model represents the humans as a homogeneous particle sys-
tem, i.e., they do not take into account any agent individuality. The model
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presented here starts by allowing the population to be composed heteroge-
neously by individuals with different attributes. More specifically, the follow-
ing attributes (related to agent i) are used:

• IdFamily i – Identifier of the family. A family is a predefined group formed
by some agents who know each other.

• Mi – Mobility level of the agent represented by a value in the interval
[0, 1], which mimics the ability of moving without help.

• Ai – Altruism level of the individual, represented by a value in the interval
[0, 1]. It represents the tendency of helping another agent. For simplicity,
we consider altruism existent between members of the same family only,
i.e., agents with high altruism try to rescue dependent agents of the same
family.

In order to model the effect of the mobility parameter in the individual
velocity, the desired velocity v0

i is computed as a function of Mi and maximum
velocity vm by

v0
i = Miv

m (5.1)

If agent i is totally dependent (Mi = 0), v0
i will be equal to zero, which is

typical for disabled people, small children, etc. In the case of M = 1 for all
agents, one recovers Helbing’s original model.

An altruism force is used to allow members of the same family to group
and head together for the exit of the virtual environment. The altruism
force that attracts an agent i to an agent j (both of the same family) is
computed by

faij = KAi(1 − Mj)|dij − dip|eij (5.2)

where K is a constant,2 dij represents the distance between agents i and j
(with origin at agent i), dip is the distance vector from agent i to its current
goal, and eij is a unit vector with origin on agent i and pointing to agent j.

In this extended model, the equation by Helbing et al. [HM95,HFV00] is
rewritten as

mi
dvi

dt
= F

(H)
i +

∑

j �=i

faij +
∑

e

fie (5.3)

where F
(H)
i is the resulting force of agent i modeled according to the original

model,
∑

j �=i faij is the resulting force due to the altruism forces, and
∑

e fie
is the resulting force between the agent i and the hazard event e. The next
sections show details of the extended model.

2 Authors have used values from 500 to 2000.
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Interaction with Environment

In Helbing’s model [HFV00], the authors only considered simple environments
like rooms and corridors. However, one of the main applications of the model
described here is to allow safety engineers and architects to specify different
simulation scenarios in realistic environments. For this reason, dealing with
more complex virtual environments is one of paramount importance. In real
life, there are shopping centers, schools, buildings, among others, that include
rooms and internal corridors which can interfere in the flow of pedestrians.
Moreover, the physical space normally has several types of obstacles (for in-
stance, furniture, columns, and plants).

This model introduces the concept of context in the virtual environment,
which relates to a known physical space that can be populated. Context
represents a geometrical environment limited by walls and exits and is defined
by convex polygons. Each context is specified by the user in order to describe
the following attributes:

1. A group of walls limits of the room. Each wall is specified as two points
that indicate its limits.

2. Interest points (IPs) define locations where agents can go to [MT01]. They
can be located in the exits and represent the desired goals of agents in
Helbing’s model. The agents’ goals are defined by the IPs, which may
change during the simulation (details will be explained later).

3. A level number (n) representing the hierarchy in the environment. More
internal rooms correspond to higher levels than the ones which commu-
nicate directly with the exterior. During the evacuation, the agents are
able to change contexts. Normally, agents leave a higher-level context to
enter another one of equal or lower level. However, it can be changed as a
function of agents’ adopted behaviors. Figure 5.10 shows an environment
with six contexts and their respective levels.

4. The hazardous events represent the accidents causing evacuation, such
as fire, explosion, smoke, etc. The treatment of these events will be de-
tailed later. A hazardous event is described as its starting position, its
propagation speed (s) and its danger level (L).

Each context contains a list of agents inside it. These agents can only
interact with walls, events, and other agents from the same context. The only
exception is that agents of a determined context avoid collision with agents of
the neighbor contexts, in order to prevent problems on the interface between
two contexts when the agents pass through doors. During the evacuation, the
agents go to the contexts’ exits defined by IPs. When agents change contexts,
they are able to perceive all the next context attributes. The possibility of
having more than one exit in the context is very plausible and can be dealt
with in our model, as illustrated in Figure 5.10 and explained in more detail
later.
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Fig. 5.10. 2D representation of an environment with six contexts. Context 3 is asso-
ciated with level 1 because of its direct communication with the exterior; contexts 1,
2, 4, and 5 have level 2 and context 6 has level 3. The points in the exits represent IPs.

Agents’ Perception

In Helbing’s model, the perception of the accident is assumed to be immediate:
all agents perceive the accident at the same time. However, in real situations
(especially when more complex environments are involved), people are not
likely to perceive the emergency situation simultaneously, except if a global
alarm system exists.

In order to deal with this kind of situation, the agents can be endowed with
one of three different perception skills: (i) the skill to perceive a global alarm
(all agents of a simulated environment take simultaneous notice of the event);
(ii) the skill to perceive that a hazard event enters into the current context
(all agents from the same context perceive the event); (iii) the skill to perceive
the intention of other agents who already know about the hazard event and
are evacuating from the environment. This skill imitates the communication
ability.

The evacuation process starts if the hazard event is triggered and also if
agents perceive such event. The user can configure the perception skill to be
applied by agents. This gives the user options to define different scenarios and
public space configurations.

In order to consider these distinct scenarios, a simplified model for the
hazardous event propagation was defined. The user informs its starting loca-
tion (x, y, z), the speed of propagation, and a danger level (L), which can be
interpreted as the type of event: gas, fire, flooding, explosion, etc. In this sim-
plified model, the hazard propagates with a uniform speed from the starting
point specified, until reaching the exits of a current context and entering a
new one. At this moment, a new event in the next context is initiated and its
initial position is the IP. The danger level is constant in the area occupied by
the event.

Once the agent perceives the emergency event (depending on its skills),
it must decide whether to abandon the place immediately or to help others.
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This decision depends on the agent’s individualities (altruism forces, discussed
above) and on the agent’s perception skills. According to these two aspects,
the agents can adopt different behaviors. Below the agent’s decision module,
implemented using an FSM, is described.

Agents’ Decision and Action

Depending on events that happen during the simulation, agents adopt one of
several possible behaviors. The possible behaviors are organized in an FSM,
as illustrated in Figure 5.11. Each of these possible behaviors, and the rules
that trigger behavior changes are explained below.

• Normal Life Behavior (NLB): The agent does not know about the
hazard event: In this case, the agent walks randomly inside the current
context avoiding collisions with obstacles and interpenetration with walls
and other agents. This represents a normal life situation and the agents
remain in this state until they perceive the hazard event. The first term on
the right-hand side of Equation 5.3 describes NLB. An agent leaves this
state (and transitions to DB) when it perceives a hazard event.

• Decision Behavior (DB): This state models the behavior of an agent
that perceived the hazard event and has to decide what to do next. Its
options are grouping with other agents (GB), trying to escape (EB), or
taking the risk of trespassing the area affected by the hazard event (RB).

• Group Behavior (GB): The agent groups with other agents of the same
family, using the altruism forces discussed above (Equation 5.2).

• Escape Behavior (EB): The agent tries to evacuate from the environ-
ment escaping from the hazard event-occupied area. The Escape Behavior
is described using force fields which are implemented through a repulsive
force that depends on the danger level (L) assigned to the event. This
force is similar to the repulsive force between agents proposed by Hel-
bing, except for the inclusion of a factor L which describes the event
danger level. The greater the danger level of the hazard event is, the
stronger must be the repulsion suffered by the agent. Rie is the sum of
agent i’s radius and event e’s radius, die is the distance between agent i
and event e’s initial position, and nie is the normalized vector pointing

Fig. 5.11. Execution flow of simulation.
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from event e to agent i. A and B are constants as presented in Helbing’s
work [HFV00].

F = LA exp[(Rie − die)/B]nie (5.4)

When new information is perceived by the agents, new decisions shall be
taken, which implies alterations in their action. For example, the escape
trajectory can be modified if the initially desired path becomes danger-
ous. Therefore, the system must allow new decisions, since the simulation
environment is dynamic. In this sense, the system must reevaluate the
choice of the IPs of each agent with a given frequency. In order to se-
lect the best IP to be followed by an agent to evacuate a context, we
attributed a weight to each IP considering two criteria: distance between
IP and agent and danger existent in the IP, with the weight of each IP
given by

WtotalIP = WdistanceiIP
+ 2WdangerIP

The larger the total weight of an IP, the larger is the probability for this
IP to be chosen for the agent. According to the danger criterion, IPs free
of danger receive weight 1, while the other IPs receive weight equal to
1 − L, where 0 ≤ L ≤ 1 is the event’s danger level. This way, the higher
the danger level of an event, the lesser is its weight in the danger crite-
rion. The weight related to the danger criterion is multiplied by 2, be-
cause most people will prefer to take a larger path if it is safer than the
others.

• Risk Behavior (RB): If an agent decides to take a risk, it enters the
danger area, trying to leave the environment. This simulates people who
decide to make their way through the occupied area instead of running to
get away from danger. The probability of making this choice depends on
the event’s danger level. We evaluate this probability through the genera-
tion of a random number between 0 and 1. If this number is larger than the
danger level of the event, then the agent decides to dive into the danger
area. In this case, the force described by Equation 5.4 disappears since the
agent no longer escapes from the event but enters the danger zone. For
example, if the danger level is equal to 0.9 (representing a highly danger-
ous event), there is only 10% possibility for the agent to enter the danger
area. If agent i is in the region affected by the event, its mobility level (Mi)
decreases with time as a function of the danger level of the event (L), as
shown in Equation 5.5.
Consequently, its desired speed decreases since the mobility decreases too
(according to Equation 5.1). The mobility of agents as well as their desired
speed are modified in order to simulate effects like debilitation or injuries.

Mi(t) = Mi(t − Δt) − LΔt (5.5)
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Fig. 5.12. Sequence of images showing the adopted behaviors of agents. The envi-
ronment has five contexts (four rooms and a corridor) and the area occupied by the
event is represented in yellow. The biggest circles (in gray) represent obstacles.

• Safe Behavior (SB): Agents evacuated successfully the environment.
Agents keep walking.

• Dead Behavior (DeB): Agents’ mobility is equal to 0. Agents stop
moving.

In order to illustrate the effects of the decision module on agent’s behavior,
Figure 5.12 shows a sequence of images which describes the agents’ adopted
behaviors.

Results

The extension to Helbing’s model described here has been able to simulate
evacuations with good accuracy. One of the experiments performed consisted
of simulating an evacuation of a four-store building and comparing the results
to the ones obtained during a real drill. The results of this comparison are
shown in Table 5.1.
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Table 5.1. Comparison between measured data on the drill and results of simulation

Criterion Measure on Drill Simulation Result
Mean velocity on corridors without traffic jams 1.25 m/s 1.27 m/s
Mean velocity on corridors with traffic jams 0.5 m/s 1.19 m/s
Mean velocity on stairs without traffic jams 0.6 m/s 0.6 m/s
Mean velocity on stairs with traffic jams 0.5 m/s 0.47 m/s
Highest density 2.3 people/m2 2.4 people/m2

Global evacuation time 190 s 192 s

5.4 Crowds Navigation

Navigation is probably the most crucial behavior for crowds that can be sim-
ulated on a computer. Building evacuation simulations for security studies,
improvements of public places for architecture design, army moves in video
games are all examples of scenarios that can be formulated as crowd naviga-
tion planning problems.

However, previously cited applications have specific needs and dedicated
techniques were elaborated accordingly to solve the navigation problem. Three
main classes of applications can be distinguished: first, those related to Se-
curity and Architecture, second, the ones related to Entertainment such as
video games or the cinematographic industry, and third, applications to Vir-
tual Reality, such as immersing a spectator into large populated virtual places
for cyber-exploration.

Security and Architecture applications need exact simulations: the way
a crowd navigates must correspond to reality. The objective is to check the
design of buildings or public spaces before their construction or modification.
Simulations potentially handle huge populations of thousands of pedestrians
in large scenes — from malls, stadiums, or stations to entire parts of cities.
The simulation setup varies — pedestrians initial states and goals, and the
environment digital mock-up — and results are then compared. Generally,
neither interactivity nor real-time output is needed given that resulting data
are analyzed at a postprocessing time.

For Entertainment applications, such as video games, interactivity is prob-
ably the most important criterion. A typical example is a real-time strategy
game where the user controls an army in order to fight another army (con-
trolled by the computer or not). The player selects large groups of units and
gives strategic orders, mainly some navigation tasks; units must react inter-
actively, even though the computer is also running other tasks (rendering,
computer enemy AI, etc.). Thus, in such applications, the navigation problem
has to be solved online in an efficient manner.

Finally, Virtual Reality applications require believability. The main ob-
jective is to immerse a spectator in a populated place and let him navigate,
explore, and observe the virtual scene as he wants. Pedestrians moving in front
of him must look natural: their appearance, but also the way they act, and in
our specific case the way they navigate. Performance is a crucial point as a
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great part of computing resources are dedicated to the rendering of the scene
and of the pedestrians while the crowd simulation runs. As a result, naviga-
tion is planned so that the simulation needs as few resources as possible while
believability is preserved.

In any of the previous cases, the crowd navigation problem can be formu-
lated as a motion planning problem. Given the pedestrians’ initial state, the
desired final state, and the geometrical description of the environment, how to
compute a path joining these states while avoiding collisions with obstacles?

Robotics studied the motion planning problem to give robots’ autonomy of
motion: the next subsection gives an overview of the major classes of solutions
to be found in the literature. Then, a description of the solutions dedicated
to the crowd navigation problem will be given. Section 5.4.3 is devoted to the
“Navigation Graphs” approach [PdHCM∗06b].

5.4.1 Robot Motion Planning

Motion planning techniques allow one to compute collision-free paths be-
tween desired destinations in an environment made of obstacles. Robotics
addressed this problem in order to give robots the autonomy of motion.
The main approaches developed by the robotics field are not directly ap-
plicable to the crowd navigation problem; however, dedicated methods are
based on similar principles. This section offers an overview of different
classes of motion planning techniques, exhaustive descriptions are to be found
in [Lat91,Lau98,Lav06].

It should be noticed that most of the motion planning solutions exploit the
Configuration Space abstraction instead of the 3D geometrical world. This ab-
straction was first introduced by Lozano-Pérez in the early 1980s [LP83], and
is generally denoted Cspace. Cspace can be seen as the state space of the transfor-
mations applicable to a robot: each point of this space corresponds to a unique
configuration of the robot. It is n-dimensional, with n the number of degrees
of freedom of the robot. Planning the motion of an articulated system in the
3D Euclidean world is equivalent to planning the motion for a point in Cspace.

Discrete Motion Planning

Discrete methods are probably the most popular and simple in practice. The
basic idea is to use a discrete representation of the environment: a 2D grid lying
on the floor of an environment for navigation planning, or a discretization of
Cspace for articulated systems. Then, a state variable is associated with each
grid cell in order to describe the world: basically, a cell is free or occupied
by an obstacle. Motion is allowed between adjacent free cells: the problem
of reaching a given goal is reduced to a search using, for example, a forward-
search technique. A-star or Dijkstra’s algorithm [Dij59] allows to one compute
optimal paths, but optimality is no more guaranteed in the exact definition
of the world.
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In order to get discrete representations of the environment that are as
close as possible to reality, an adequate precision (the grid step size) must
be used. In case of tight problems (large environments with narrow passages
for example), memory needs and search times make the solution impractical.
This limitation can be partially solved by using a hierarchical discretization:
adjacent free cells are packed as a single free zone at a higher hierarchical
level. As a result, the geometry of the environment is captured at the lowest
levels of the hierarchy while topology is captured at the highest levels. The
problem is first solved at the higher level, and lower levels are then explored
to refine the solution.

Exact Motion Planning

This class of methods exploits an exact geometrical representation of the
world. For this reason, they are generally limited to specific cases (e.g., polyg-
onal worlds). Cell-decomposition techniques belong to this class [Cha87]. The
basic idea is to compute a complete partition of the free space into a finite
set of regions called cells. Cells are often convex in order to ease the naviga-
tion of a mobile into a given cell. Cell adjacency is captured into a graph in
order to represent the connectivity of the free space (and, by deduction, its
topology). The planning problem is then reduced to a graph search again, as
in the previous case of discrete motion planning.

Maximum clearance is another exact approach (also known as generalized
Voronöı diagrams [For97] or retraction method [OY82]). Here, the key idea
is to remain as far as possible from obstacles in order to execute safely nav-
igation tasks. A clearance map provides the distance to the nearest obstacle
for any point of the world. The union of local maximums of this map forms
the maximum clearance map. The maximum clearance map appears like a
skeleton capturing the free space topology. This approach is popular in the
robotics field because maximum clearance paths correspond to the safest ones
in order to avoid collisions.

Sampling-Based Methods

Exact and discrete methods model the entirety of Cspace to search for solu-
tions. In case of complex obstacles and mechanical systems (number of degrees
of freedom), the induced complexity may render such methods impractical.
Then, a solution is to sample partially and randomly Cspace.

Two pioneer approaches are to be found in the literature: Probabilistic
Roadmap Method (PRM) [KSLO96] and Rapid Random Trees (RRT) [KL00].
The first one constructs a reusable data structure in order to solve multiple
motion planning queries, whereas the second one builds a temporary struc-
ture to answer as fast as possible a single query. However, their principle is
similar.
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The method searches for collision-free configurations, and attempts to con-
nect them by paths computed with a steering method. Collisions are then
checked for these paths. Valid paths and configurations form respectively the
edges and the nodes of a graph or a tree (a roadmap for PRM and a tree for
RRT). Solutions to navigation queries are searched into this structure.

This randomized approach is general, and fits many classes of problems. It
has been popular the last 15 years, and hundreds of variants appeared in the
literature: specific metrics and pseudo-random sampling techniques [Kuf04b],
heuristics or strategies to build a roadmap [SLN00], optimization techniques,
adaptations to time-varying problems (dynamic environments), etc.

Reactive Methods

Previous methods provide a full path leading to the prescribed goal, whereas
reactive methods only consider the problem locally. From a local observation
of the environment, a new action is computed each step. Reactive methods are
generally simple to implement, but, as the environment is considered locally,
may result in deadlocks. For that reason, they can also be used as a feedback
control law only: a full path is computed while the reactive method is only
used to track the path. Such a use of reactive methods enables, for example,
the consideration of dynamic environments (with moving objects).

Potential fields [Kha86] is a reactive method. In such an approach, obsta-
cles are repulsive whereas the goal is attractive. By following the gradient of
the resulting vector field, the mobile entity moves toward the goal.

Multiple Robots

Two major approaches were developed to address the motion planning prob-
lem for several robots at the same time: the coordinated ones and the prior-
itized ones [BO05]. Coordinated approaches can be centralized or decou-
pled [SL02]. Briefly, centralized approaches consider the different robots as
a single articulated mechanism, and the solution combines the Cspace of each
independent robot into a single composite one in which the motion is planned.
In decoupled approaches, the robots’ motions are planned independently, and
then are coordinated to avoid collisions. Finally, in prioritized approaches,
each robot is assigned a priority and processed sequentially. The robots hav-
ing a planned trajectory become moving obstacles for the resting one.

5.4.2 Crowd Motion Planning

The crowd motion planning problem was solved in many different manners in
the literature, with respect to the constraints met: size of considered crowd and
environment, objectives (realism, interactivity, believability), etc. The robot
motion planning techniques were used as a basis for the solutions developed,
with adaptations to the crowd problem specificities.
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Models for Safety Applications

Pedestrians simulator for safety applications appeared during the past 30
years, and [SA05] provides an excellent overview of the different existing com-
mercial softwares. The main goal of these softwares is to provide exact results:
evacuation times, detection of panic situations, etc. For this reason, calibration
of models and comparisons with real data are crucial, and thus, navigation
planning is often a secondary problem. Three major classes of approaches are
distinguished: flow-based models, agent-based models, and cellular automata.

Flow-based models address the crowd simulation problem from a global
point of view: pedestrians are not modeled as individual entities, but as being
part of a flow. The model defines the physical properties of the flow and of
the environment in evacuation scenarios. EVACNET4 [KFN98] is an example
of flow-based model. The environment is represented as a network of nodes.
Nodes are bounded parts of the environment such as rooms, corridors, lob-
bies, etc. The state of a node is described by high-level parameters such as
occupancy, average interperson spacing, or other qualitative descriptions. A
gateway between two parts of the environment is modeled by an arc link-
ing the two corresponding nodes. The user must define the flow capacity of
each arc as well as the required traversal time. In order to set up a simu-
lation, the user defines the nodes’ initial states (number of people in each
node, and other parameters conditioning the node state), as well as some
destination nodes (evacuation exits). One can observe that the model does
not describe the environment geometry explicitly, but only implicitly using a
network of nodes. As a result, the path planning problem on a geometric per-
spective is not to be addressed. EVACNET4 searches for a minimal evacuation
time, and an advanced network flow transshipment algorithm is in charge to
find a solution. EESCAPE and FireWind are other examples of flow-based
models.

In cellular automata approaches, the environment is modeled as a grid
of cells. Cells are occupied by pedestrians, and local density, flow, or speed
are taken into account to compute how pedestrians move from cell to cell.
Note that any discrete motion planning technique (presented previously) is
applicable in such a framework. AEA EGRESS [Tec] is an example of a cell-
based approach. EGRESS uses hexagonal cells to get a better estimation of
the direction of motion — indeed, the error is higher using square cells. Some
cells are defined as attractive goals, others are occupied by obstacles. At a
preliminary step, a distance map is computed: distance from any cell to the
nearest goal-cell is computed. The simulation starts from the initial positions
of the persons, then, at each time step, each person chooses an action to
execute among four possible ones: move closer to the exit, move farther from
the exit, move to a cell the same distance from the exit, or do not move. A
probability is associated with each action in order to determine which one is
chosen.
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Simulex [TM94] also uses distance maps on 2D grids generated from CAD
files to guide pedestrians, but Simulex belong to the agent-based models
class. Several maps may exist to assign different goals to pedestrians. Distance
map is a discrete vector field, and pedestrians follow the gradient to reach their
goal. Pedestrian motion models (walk speed, accelerations, and interactions)
are calibrated from observations of real humans.

One of the most popular approaches is Helbing’s model [LL95] known as
the “social force model.” A sum of forces influence the locomotion. Some
are attractive, others are repulsive so that a pedestrian can follow a desired
direction, respect a desired displacement speed, consider the presence of other
pedestrians and static obstacles. This model was reused and refined in many
other approaches, like the one described in Section 5.3.2.

LegionTM is also a pedestrian traffic simulator belonging to the class
of agent-based models. It was mainly developed from Still’s works [Sti00]
(Crowds Dynamics Ltd.). Environments are modeled in a specific manner (iS-
pace). Agents and environment communicate: for example, an agent asks for
a move direction given its objective, but also, agents inform the environment
about the facts they previously observed: this mechanism allows information
propagation between agents via the environment. Unhappily, the method used
to plan pedestrian paths is not presented in detail because of a commercial
nondisclosure agreement. However, the solution is globally based on the least
effort algorithm, which searches for the best (optimality is not guaranteed)
path satisfying a set of constraints (speed distribution, assigned destination,
collision). Paths’ costs are computed according to their length, required travel
time, and effort.

The Fire Safety Engineering Group of the University of Greenwich also
developed an agent-based evacuation simulator, EXODUS, first introduced
in [GG93]. The pedestrian model integrates many psychological factors to
simulate evacuations. The way-finding system is dedicated to evacuation ap-
plication. Indeed, given the level of knowledge about the environment where
they navigate, pedestrians know their itinerary, or react to signage or to in-
dications from other agents. The navigation task is done using a rule-based
system.

Models for Entertainment Applications

The primary need of the entertainment field is interactivity. However, the
need for interactivity has to be interpreted in different ways from a specific
application to another. The cinematographic industry uses crowds simulations
to obtain impressive scenes involving thousands of virtual actors. The simula-
tion is generally computed offline, but has to be fast enough to allow multiple
trials and editions: the user interacts as a real choreographer. The user both
acts at a highlevel, to design global crowd motions, and at the lowest level,
to control precisely some elements of the crowd, the timing of their successive
actions, etc.
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Massive Software [Sof] was designed to answer the cinematographic in-
dustry needs. The software combines several navigation techniques in or-
der to allow a user to author the crowd motion via an ergonomic interface
(Figure 5.13). The more the user drives the crowd, the less agents have to be
autonomous. Consequently, at the lowest level, basic techniques are used to
control agents such as potential fields to create motion flows. However, agents
are equipped with artificial intelligence (brain) to execute navigation tasks in
an autonomous manner, so that they can react to the presence of obstacles or
other agents. They are able to roam endlessly in a crowded 3D environment
using a synthetic vision to detect static or dynamic obstacles and simple fuzzy
rules to determine the appropriate reaction.

Another way to author crowd motion is by definition of constraints: action
timing, coordination: the approach proposed by Sung et al. [SKG05] allows
one to satisfy precisely such constraints. In particular, a virtual characters
are able to meet somewhere or execute an action at given times. A PRM
(Section 5.4.1) is computed to help the collision-free navigation in the envi-
ronment: the roadmap is dense enough to provide quite optimal paths using a
Dijkstra’s search without any further optimization. A specific animation tech-
nique transforms the planned paths into trajectories (i.e., with time properties
that are now known for the resting operations). Collisions between pedestri-
ans are anticipated directly at the planning stage. Characters are processed
sequentially. A character whose motion is planned becomes a moving obsta-
cle for the following ones (as for prioritized motion planning approaches in
robotics described in Section 5.4.1).

For video games applications such as real-time strategy games involving
huge armies, interactivity is also crucial. But, in this case, the computation
time is the most restrictive constraint in order to obtain real-time perfor-
mance. The player must observe immediately the reaction to his orders with-
out discontinuity in the game.

Fig. 5.13. Massive Software screenshot. (Courtesy of Stephen Regelous)
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The work by Reynolds [Rey87], already discussed in Section 5.2, demon-
strated how a crowd behavior could emerge from an efficient agent-based sim-
ulation. More recent works extended the set of agent behaviors [Rey99] that
can be simulated, and provided solutions to typical player queries (seeking,
fleeing, pursuit, evasion, avoidance, flocking, path or wall following, etc.)

In [LK06], a technique was developed to address online path planning for
a large number of pedestrians (up to 150) in a highly dynamic environment.
In this approach, the environment is modeled as a 2D grid whose cells are
occupied or not by an obstacle. Given the goal of each pedestrian, a dedi-
cated search algorithm [Kuf04a] computes a global solution path. A subgoal
is selected from the solutions found by running a Runtime Path Finding algo-
rithm. Indeed, it is able to handle the presence of other characters, dynamic
on specialized obstacles (forcing the character to jump over or pass under).
A motion synthesis system is used at this stage in order to plan directly be-
lievable motions. Note that this approach is an extension of [LK05] where
a prioritized motion planner was used to solve collision between pedestrians
and other pedestrians as well as between pedestrians and mobile obstacles
(for which the trajectory has to be completely known before the search).

In [TCP06b], Treuille et al. model crowds as a particle system. The envi-
ronment is modeled as a 2D grid which is able to map an uneven terrain.
The evolution of a crowd state of the world is computed by superposing
grids capturing different information: the density grid (people’s locations),
goal grids (where they go), boundary grids (the environment itself), etc.
The superposition results in a potential field, whose gradient is followed by
pedestrians.

Kamphuis and Overmars [KO04] specialized their motion planner in order
to consider groups of pedestrians. The main idea is to plan the motion for a
deformable shape containing all the members of the same group. The surface
covered by the shape remains identical so that people always have enough
room to move while remaining grouped. The shape is deformable so that
narrow passages can be crossed, as well as large places.

Models for Virtual Reality Applications

Solutions to simulate crowds are at the crossroads of the previous models’
requirements. They combine realism and performance in order to immerse an
observer in a virtual crowd. Real-time simulation is required to allow inter-
activity with the user while believable results are required to maintain the
suspension of disbelief.

To satisfy these needs, Musse and Thalmann introduced the idea of scal-
ability in crowd simulation in [MT01]. The way collisions are detected and
avoided differs with respect to the distance from the spectator’s point of view.
The crowd is simulated using an agent-based model. Agents group together
when having compatible sociological factors. Emotional status of each agent
evolves when he meets other agents.



114 5 Behavioral Animation of Crowds

In [TLC02a], Tecchia et al. use a succession of layers (maps) to control
the behavior of pedestrians. Given the current location of the pedestrian, the
method looks up successively in each layer for information in order to up-
date the pedestrian position. One is dedicated to collision detection (between
pedestrians and static obstacles), one is dedicated to intercollision detection
(between pedestrians), one to define local behaviors or tasks to achieve in
given locations, and one to define the attraction areas (goals). According to
the authors, the combination of these four layers is sufficient to produce be-
lievable crowd behaviors (see Figure 5.15).

Fig. 5.14. Virtual reality

Fig. 5.15. Snapshot of the underlying grid used for the behavior (left) and of
the development system (right) [TLC02b]. (Courtesy of F. Tecchia, C. Loscos and
Y. Chrisanthou)
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The solution presented by Lamarche and Donikian [LD04] starts from the
mesh of an environment, for which a flat walking surface is specified. A 2-m-
high slice of obstacles is projected onto the walk surface to create a blueprint
of the environment. The resulting 2D map is then analyzed using a 2D cell-
decomposition technique: the resulting triangulation — after optimization and
organization into a hierarchy to enhance path searches — is captured into a
graph. A navigation planning query is solved by graph search for a path joining
the desired cells (note that paths are precomputed to enhance computation
times). The resulting navigation plan is a sequence of cells (free areas) and
portals (segments of lines, which are the mutual boundaries of adjacent cells)
to go through. A reactive technique is used to execute the plan while taking
into account the presence of several pedestrians simultaneously in a cell. The
way portals are crossed depends on the angle formed by the pedestrian view
direction and the portal, a free-space is preserved around the pedestrians, and
trajectories are linearly extrapolated to anticipate and avoid collisions.

In [ST05], Shao and Terzopoulos model the environment as a hierar-
chical collection of maps. At the lowest level, some specialized objects and
their properties are described (seat, waiting line, etc.). At a middle level,
the geometry of the environment is described using grid maps and quadtree
maps. At the same level, perception maps store the list of stationary objects
present in the corresponding area as well as the identifiers of the pedestri-
ans currently there. Finally, at the top level, the environment is modeled
as a set of bounded 3D volumes (such as rooms or corridors) as well as
their interconnections, resulting in a graph capturing the environment topol-
ogy. Pedestrians are equipped with a set of basic reactive behaviors allow-
ing them to execute basic tasks (e.g., walk along a direction) while avoiding
collision with other mobile objects, such as other pedestrians. The set of re-
active behaviors allows one to consider densely populated areas or highly
dynamic scenes. The topological map allows the achievement of higher-level
tasks such as reaching a far destination. A global path is found which is
a succession of bounded places to cross (as the nodes of this map are 3D
bounded volumes). The path is then refined using the grid maps describing
geometrically each node of the topological map. Performance of the solution
allows 1400 pedestrians to be simulated at an average rate of 12.3 frames per
second.

VR applications often require one to define and run different scenarios dur-
ing experiments. Ulicny et al. designed a dedicated tool, called Crowdbrush,
as illustrated in Figure 5.14 easing such tasks. Among many other function-
alities, Crowdbrush allows one to design sequences of places of variable size
to go, defining paths. Crowdbrush also allows one to assign pedestrians to
paths. No motion planning method is involved as paths are hand-designed.
Helbing’s social forces [LL95] are used to avoid intercollisions between virtual
humans.
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Finally, Dobbyn et al. [DHOO05a] use a simple navigation map, stored
as a texture on the graphics hardware to distinguish navigable areas from
obstacles.

5.4.3 A Decomposition Approach for Crowd Navigation

Navigation Graphs is a novel approach to the crowd navigation problem.
The next section describes the goals and objectives of Navigation Graphs.
Then, the data structure supporting the solution is detailed as well as a
method for computing it. The principles of two tools based on Navigation
Graphs, a crowd navigation planner and a crowd navigation simulator, are
then exposed.

Objectives

The main goal of Navigation Graphs is to allow the cyber-exploration of large
inhabited virtual worlds, where the population activity is limited to navigation
tasks. Two main problems need addressing to reach such a goal: the design of
a virtual population and the simulation of navigation tasks.

Concerning the population design, the main objective is to ease the pro-
cess: a few minutes and some mouse clicks are sufficient to populate a virtual
world using our technique, with coherent and believable results. The second
objective is to allow interactivity: the user is able to observe immediately the
design operations’ results, and to edit the configuration until he is satisfied
with the resulting simulation. Finally, the solution is able to handle a large
class of environments (cities, landscapes, natural scenes, buildings, etc.) and
various population sizes, up to tens of thousands of pedestrians.

To reach such objectives, the Navigation Graphs-based crowd planner
allows a user to attribute goals to pedestrians. To quicken the design pro-
cess, groups of pedestrians are processed simultaneously. To increase the real-
ism, each pedestrian has a personalized solution to reach its goal destination,
which eventually varies with time with respect to the context. The proposed
crowd navigation planner solves navigation flows queries formulated as fol-
low: “n people are wanted to navigate between A and B with x% scatter-
ing.” Its main principles are presented later in this section with technical
details.

The main goal of the crowd navigation simulator is to provide the most
believable experience to the cyber-explorer immersed in the populated virtual
world. As a large crowd is simulated in real time, a distribution of the available
computational resources is required in order to preserve high refresh rates.
These resources should be mainly concentrated where the cyber-explorer look
focuses: the way pedestrians are steered to follow their itinerary is the best
there, whereas simplifications are progressively done in more distant areas. As
a result, the simulation should be scalable.
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Navigation Graphs ease the scaling of a crowd simulation. They maintain
relationships between navigating pedestrians and the environment. They also
enable the distribution of Levels of Simulation — LoS, which indicates
the required quality of simulation at a given place and time — in an efficient
manner. More details are given later in this section.

This set of objectives makes the Navigation Graphs-based planner and
simulator ideal for VR and entertainment applications: different simulation
setups can be rapidly created, and the immersion experience is rich thanks to
the optimum quality of the simulation in the focus area of the spectator.

Navigation Graphs

Navigation Graphs is a data structure capturing the topology and the geom-
etry of the navigable space of a given environment. This structure is inspired
by cell-decomposition techniques from the robotics field; however, the de-
composition is not complete. For a given environment, the navigable space is
composed by the surfaces free of obstacles and flat enough to allow navigation.
Navigation Graphs decompose the navigable space in a set of circles. Inter-
secting circles are adjacent navigable areas, and thus connected by an edge
in Navigation Graphs. Figure 5.16 illustrates Navigation Graphs in an aca-
demic example (top image), and on a test environment (bottom images). The
academic example shows that the graph vertices are placed in a specific man-
ner: centered on the maximum clearance path (generalized Voronöı diagram),
and each separated with a minimum distance in order to provide a trade-off

Fig. 5.16. Navigation Graphs principles. Top: example of a Navigation Graph in
a 2D academic example. Bottom: Vertices (left) and Edges (right) of a Navigation
Graph computed for a natural scene.
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between the complexity of the graph and the quality of its coverage. Geomet-
rically, edges are segments of line joining the circles intersection. They delimit
gates that pedestrians must cross to go from a navigable area to another. The
two bottom images illustrate an example of Navigation Graphs computed for
a test outdoor environment. Vertices and Edges are displayed separately. This
example illustrates the ability of Navigation Graphs to consider uneven and
multilayered environments.

The inputs of the Navigation Graphs computation technique are the mesh
of the environment and a few user-defined parameters. These parameters are,
first, the size of the pedestrians (maximum width and height h of people in
the crowd), second, the slope angle they are capable to cross, and finally, a
computational precision.

A method for computing Navigation Graphs using graphics hardware is
presented in [PLT05]. It uses an intermediate grid to ease the computation.
The major method steps are:

1. Environment Mesh Sampling: The mesh is sampled at the user-
defined precision and stored as a multi-elevation map (horizontal coor-
dinates refer to one or more elevations).

2. Map Filtering: superposed points separated by a vertical distance below
the user-defined height h are filtered. The lowest point is deleted.

3. Map Points Connection: The map points are then interconnected. Each
point is potentially connected to its four side neighbors. Each connection
between two points is done under the following conditions: no obstacle
stands in-between and the slope is limited to the user-defined max slope
angle.

4. Clearance: The distance from every point of the map to the nearest
obstacle or impassable slope is computed.

5. Navigation Graph Vertices: Vertices are created from a set of selected
elevation map points. Their characteristics are directly deduced from pre-
vious computation: circles are centered on the selected points and their
radius equals the corresponding clearance.

6. Navigation Graph Edges: Edges are computed and created between
overlapping vertices.

Navigation Graphs are computed only once for each environment. They
are stored for future reuses. An advantage of Navigation Graphs is to provide
a memory-saving representation of the environment (the description of a set
of circles and segments of lines). No expertise is required to compute Nav-
igation Graphs, the required input parameters can be simply deduced from
the environment characteristics (size of the scene and of passages). However,
a little expertise allows a user to add some optional parameters in order to
find trade-offs between complexity and quality of the resulting graph.
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Path Planning with Variety

Navigation Flow queries — previously defined as “n people between locations
A and B with x a scattering factor” — are solved by planning paths between
two desired locations. As for other cell-decomposition based approaches, a
graph search algorithm is used: Dijkstra’s search provides the optimal solution.
Given the Navigation Graphs structure, solution paths are set of gates to cross.
Gates delimit polygonal corridors inside which a collision-free navigation with
static obstacles is guaranteed. Pedestrians avoid each other while remaining
inside corridors to accomplish their navigation goal. An example of such a path
is presented in Figure 5.17, for the academic environment (top-left image) as
well as for the garden example (bottom-left image).

The corridors’ width provides a first level of variety for the pedestrians’
trajectories. However, congestion points may appear where the gates compos-
ing the solution are thin. For this reason, alternative solutions are searched,
which provide a second level of variety. Alternative paths are found by modi-
fying the edge costs of Navigation Graphs and running graph searches again.
The deepness of the search for alternative paths depends on the desired scat-
tering parameter x. The set of solution paths (solution and alternative ones)
compose a navigation flow (right images of Figure 5.17).

Variety is an important factor. Indeed, if pedestrians get individualized
trajectories directly at the planning stage, the number of potential interac-
tions (intercollisions) is reduced. Scattering people thus saves computation
time during the simulation. Moreover, it allows us to scale more efficiently
the simulation: at far distances, where intercollisions are hardly (or even no

Fig. 5.17. Navigation planning principles. Top images: Academic environment with
a navigation path (left) and a navigation flow (right) between two desired destina-
tions. Bottom images: Natural environment with a navigation path (left) and a
navigation flow (right) between two desired destinations.
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more) detectable by a spectator, the avoidance system can be disabled, and
pedestrians still get naturally scattered, which is required for believable sim-
ulations. In other approaches, variations in behaviors often result only from
interactions between people (especially when goals and initial conditions are
identical for several pedestrians). Finally, the simulation setup may be re-
duced: Navigation Flows allow the navigation planning stage for a batch of
pedestrians.

Algorithm 8: Navigation flow query
Data: locations A and B, Nav. Graph NG, scattering factor x
Result: a navigation Flow Fsol set of solution paths {Pref , Psol1 , . . . , Psoln}
begin1

vA ← the NG vertex including A2

vB ← the NG vertex including B3

Einc ← {}4

Pref ← Dijkstra(vA, vB ,NG)5

Fsol ← {Pref}6

while true do7

Psoli ← Dijkstra(vA, vB ,NG)8

if Psoli /∈ Fsol then9

if length(Psoli) < x× length(Pref ) then10

Fsol ← Fsol

⋃{Psoli}11

end12

else return Fsol13

end14

if ∃e \ e← Thinnest({e | e ∈ Psol ∧ e /∈ Einc}) then15

e cost = e cost× 1016

Einc ← Einc

⋃{e}17

end18

else return Fsol19

end20

end21

A Navigation Flow query is solved using Algorithm 8: it puts into practice
the previously introduced technique. Initially, edges cost equals the distance
between the centers of the linked areas. Einc is the set of edge whose cost has
already been increased (initially empty, line 4). Increasing a given edge cost is
allowed only once (line 15). Pref is the shortest path belonging to the solution
flow Fsol (lines 5–6). Its length is used as a reference, and the algorithm will
not search for a path longer than x times this length (lines 10–13), where x
is the user-defined scattering factor. Before searching for a new alternative
path, edges costs are modified (lines 15–18): the thinnest gate whose cost has
not been modified yet is increased.
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The algorithm results in a set of paths joining A and B. All paths are
different, and implicitly ordered from the shortest to the longest, as they are
progressively discovered in this order.

Scalable Simulation

The previously dispatched population of pedestrians is brought to life by the
crowd navigation simulator [PdHCM∗06b]. The simulator is designed to han-
dle very large crowds up to tens of thousands of pedestrians in real time, on
a desktop computer. Current power of such computers does not allow high-
fidelity simulation for all pedestrians at the same time. As a result, the sim-
ulation must be scaled to distribute the available computation time so that
the simulation remains believable in the surrounding area of the immersed
spectator, while simplifications are done elsewhere.

To do so, the position and orientation of the spectator’s look are taken
into account each time step, and a level of simulation (LoS) is computed for
each pedestrian according to their relative position. The LoS determines how
precisely is executed by the navigation task:

• simulation update frequency,
• enabling collision avoidance between pedestrians or not,
• quality of steering.

In a large scene, most of the pedestrians are invisible to the spectator at a
given time. For these pedestrians, the update will be done at low quality: at
low frequencies and approximately.

In case of a huge virtual population, even the time required for computing
LoS and simulating may compromise the real-time rates. Batched computa-
tions allow to push the limit back. A key-idea is to reuse the spatial partition
of the space captured by Navigation Graphs. Indeed, LoS are computed for
a whole navigable area and it affects to all the pedestrians contained in this
area. The repartition of LoS values according to the point of view is illustrated
in Figure 5.18.

Fig. 5.18. Scalable simulation: distribution of the LoS values according to the point
of view.
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Algorithm 9: Simulation loop.
Data: simulation initialized, Navigation Graph NG, spectator’s point of view

PoV
Result: updated situation
begin1

forall vertex V ∈ NG do2

LoS ← ComputeLoS(V, PoV )3

if UpdateRequired(LoS,V::LastUpdateTime) then4

V::LastUpdateTime ← T ime5

forall pedestrian P ∈ V do6

Steering(P,LoS)7

if WayPointReached then8

if EndOfPath then9

GoBackward10

ChooseCurrentBestPath11

end12

ComputeNewWayPoint13

MoveToNextVertex14

end15

end16

end17

end18

UpdatePathsTravelTimes19

end20

Algorithm 9 updates the simulation. Unlike other simulations, the loop first
scans all the navigable areas captured in the Navigation Graph (V , line 2). A
LoS is computed for each area (line 3).3 Updating is required or not according
to the LoS value and the time at which the considered area was last updated
(line 4). Updates are done at low rates (e.g., 1 Hz) for low-quality LoS values
(far or invisible areas), whereas real-time rates are wanted in front of the
spectator (25 Hz, high-quality LoS).

Now, pedestrians contained in V are considered individually (line 6).
They are steered according to the LoS again: with or without collision avoid-
ance [LL95,Rey99], smoothly ( [Rey99] using only the seek behavior) or not
(linear steering toward the way point). Way points are computed according
to the followed path: a point is picked within each gate to cross. As a result,
reaching a way point corresponds to a transition from a vertex to another
for the considered pedestrian. The references to the pedestrians navigating
inside each vertex are changed accordingly (lines 13–14). These references are
crucial: they allow a fast selection of pedestrians navigating in a given area.

3 In some rare cases, an area may correspond to several LoS (e.g., because the area
is very large), and each pedestrian is then considered individually. This case is
not detailed here in the interest of readability.
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Fig. 5.19. Way-point computing according to an individual parameter p.

Way points are computed at each gate which must be crossed according
to an individual parameter. This parameter ranges from 0 to 1: 0 corresponds
to the left extremity of the gate, and 1 is the right extremity. For values
between 0 and 1, the way point is moved from the left to the right of the gate
accordingly, as shown in Figure 5.19.

When the end of the path is reached, the pedestrian is at the extremity
of the flow (see Section 5.4.3). He then goes back to the previous extremity,
following any path of the set composing the flow (lines 9–12). Our solution
chooses the path currently having the best travel time. Travel time is estimated
by taking into account the distance and the population density along the path
(line 19).

5.5 Final Remarks

This chapter presented a review of methods of behavioral animation and also
discussed some specific solutions described in crowd literature. Such methods
have a large importance in the context of crowd simulation where users should
be focused on more high-level situations.
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Relating Real Crowds with Virtual Crowds

6.1 Introduction

This chapter describes some reflections concerning the challenge of capturing
information from real crowds to relate it with virtual crowds. Three parts
are discussed here: (i) a study undertaken on the motion and behavior of
real crowds, where the goal is to identify some patterns of the behaviors of
real people to be used subsequently in virtual crowds, (ii) discussion of a few
sociological crowd aspects, and (iii) computer vision methods as automatic
ways to capture information from real life to guide virtual crowds.

6.2 Studying the Motion of Real Groups of People

In this section, we present a simple and empirical way to observe real crowds,
and to use such observation for crowd simulation. We do not employ computer
vision algorithms (as it will be presented later) to capture semantic informa-
tion from videos, but only a visual process, trying to select information from
the crowd structure. This process is important for defining which and how
the observed information can be used to simulate realistic behaviors in vir-
tual crowds. The observed information in the real crowd relies on two aspects:
crowd characteristics and crowd events, as discussed in the next subsections.

6.2.1 Crowd Characteristics

Characteristics of the crowd can include: crowd space (if all the space is oc-
cupied, if the individuals are close to each other, regions where there is some
action, regions where people walk are examples of crowd space questions),
crowd size (number of groups and individuals within each group), crowd den-
sity (relation between space and crowd sizes), crowd structure (considering
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Fig. 6.1. Group acting on the train station. The drawing in the figure shows the
action location.

the grouping of individuals), and crowd basic behaviors (walk, grasp, look at
some location, apply a posture).

Concerning the crowd space, some data are identified:

• Space to apply actions (location and size of space). For example, Figure 6.1
shows a space to apply action identified in a video sequence.

• Space to walk (location and size of space), as shown in Figure 6.3.
• The way groups walk (speed, respecting the group formation, occupying

all the walking space), as shown in Figure 6.2.

In order to describe the crowd size, observations are made to identify the
grouping existent in the filmed sequences as well as the number of members in
each group. For instance, in the filmed sequence of Figure 6.2 (only shown one
picture), approximately 40 persons were observed during some time, whereas
the groups are formed by approximately two persons.

Fig. 6.2. Grouping formation observed in a filmed sequence.
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The relationship between the number of individuals and the occupied space
represents the crowd density. The concept of high density, meaning when
people feel that the space is crowded, can be subjective and dependent on
other parameters. For instance, people in a football stadium normally expect
to find a lot of people. Then, the feeling of a crowded environment can only
appear when the people cannot move due to the proximity of other individuals.
However, let us imagine people in a restaurant or any other place where they
do not expect to find a crowd. If some event occurs in this environment, even
if people can still have a normal unimpeded walking motion, they can present
the feeling of being in a crowded environment. As this concept is subjective, we
can use an informal (but more objective) definition, which does not consider
the feeling of people but really the physical space concerned with each one.
For example, a crowded environment occurs when each person has less than
two square meters of personal space. Then, depending on the space and the
crowd size, an environment can be crowded or not.

Concerning the structure of crowds, three entities are observed in the real
filmed sequences (Figures 6.3 and 6.4) and can be used to define a model of
virtual crowds: the whole crowd, groups, and individuals. These entities are
recognized as a function of their position, grouping, and/or their function in
the scene. Thus, the crowd is considered as the whole structure of people in the
scene which can be subdivided in groups (or not), depending on the different
actions and motion occurrence. A group is recognized when it takes a different
intention from the others, where intention deals with a different motion, veloc-
ities, or behavior. For example, let us consider a crowd situated in a theater.
If a group of people stand up and start to clap, we automatically recognize it
as a group, which arises from the crowd. Also, when we observe pedestrians
on the street, we can identify some families or groups which walk together
because they have a relationship (know each other, are friends, etc.) or only

Fig. 6.3. Real crowd scene representing directions of movement (arrows) and inter-
est locations (circle) for crowds.
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Fig. 6.4. Complex scene of crowds where different entities (crowd, groups, and
individuals) can be recognized.

because they are going in the same direction (see Figure 6.2). The third entity
observed in our examples is the individual, which is recognized in the same
way as groups.

The basic behavior of crowds defines what the crowd is doing, e.g., walking,
watching something, applying some posture, etc. We have focused our analysis
basically on four types of basic behaviors: action, motion, attention, and inter-
action. However, depending on the basic behavior, some other parameters can
be required. For instance, if the crowd is walking (motion behavior), the
locations where the crowd is going can be recognized as “interest locations”
or “goals” of the crowd, and if the crowd is watching a show (attention be-
havior), an “interesting point” can exist (e.g., the stage of a theater). The
action behavior implies doing something, like clapping, for instance. And
the interaction behavior can include interaction with persons or with ob-
jects. Figures 6.1–6.4 show some information observed in filmed sequences,
such as direction of movement, interest locations, action locations, grouping
of individuals, etc.

6.2.2 Crowd Events

Crowd events describe both temporal and spatial information associated when
something occurs. For instance, some groups of the crowd, which were walking
and waiting, enter a train when they perceive the sign of open doors. The
associated information describes the time and location in which the event
happened in the real space. An example of information observed in real group
interaction is presented in pseudo-code (Algorithm 10).

Each time something occurs in the observed crowd, crowd events specified
in 10 can be described to be simulated in virtual space. These data are then
used to simulate virtual crowds, as will be discussed next.
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Algorithm 10: Example of information to be captured from real crowd
sequences.

begin1

CROWD CHARACTERISTICS2

Size: 60 persons3

Density = NO-CROWDED4

Entities: CROWD and 3 GROUPS formed by approximately 5 persons5

Basic behaviors: walking to different interest locations: LEFT, BACK6

and FRONT in the real crowd space and waiting (sited or not)
CROWD EVENTS7

WHEN: Time = 5,2 min8

WHAT: Event = Doors are opened9

REACTION: People enter the train10

WHERE: Location of doors in the real space11

WHO: Group on gate 312

end13

6.2.3 Parameters for Simulating Virtual Crowds Using Real
Crowd Information

Based on information observed in real crowds, we have defined some parame-
ters than can be handled to simulate virtual crowds. In this case, the virtual
crowd can mimic the crowd structure and events observed in real crowds.

Some examples of parameters to be used to simulate virtual crowds are:

• Crowd structure
• Basic behaviors
• Crowd events and associated reactions

Crowd structure concerns the information about the number of individuals
existing in the crowd as well as in the groups. The basic behaviors describe
the action or motion associated with the crowd at the beginning of the sim-
ulation. Afterwards, events can be triggered, which can generate reactions
to be achieved by groups of the crowd. Pseudo-code 11 presents an example
of information used to simulate virtual crowds according to the information
observed in real crowds and described in Algorithm 10.

While crowd structure deals with quantitative parameters of the people,
crowd events are related to what occurred with the crowd during the simu-
lation (for virtual crowds) or during the observation period (for real crowds).
For instance, in Algorithm 11, the crowd is formed by 100 agents divided in 4
groups. Three groups each contained 3 to 6 agents, and the fourth group con-
tained the rest of the agents. The basic behaviors of agents relate to walk in the
defined space or to stay seated in the action areas. The event named <Event1>
will be generated at a specified time (5.2 minutes of simulation). Virtual peo-
ple to be affected are defined in <ALL PEOPLE IN THE GATE3>, where
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Algorithm 11: Virtual crowd event generated using real crowd observations.
begin1

CROWD STRUCTURE2

NUMBER PEOPLE: 1003

Density = NO-CROWDED4

GOALS CROWD:5

LEFT LOCATION ( X Y Z )RIGHT LOCATION ( X Y Z ) (Related to6

the crowd space)
ACTION LOCATION SIT ( X Y Z )7

REGION GATE 3 (X Y Z) (X Y Z)8

NUMBER GROUPS: 39

BASIC BEHAVIORS10

GROUP 1NB PEOPLE: [3,6] (Group contains from 3 to 6 individuals)11

BASIC BEHAVIOUR: WALK from LEFT to RIGHT12

GROUP 2NB PEOPLE: [3,6]13

BASIC BEHAVIOUR: SITED14

GROUP 3NB PEOPLE: [3,6]15

BASIC BEHAVIOUR: WALK from LEFT to RIGHT16

CROWD EVENTS17

Event 1:18

WHEN: Time = 5,2 min19

WHO: ALL PEOPLE IN REGION OF GATE 320

Reaction Event 1:21

ACTION: ENTER THE TRAIN THROUGH THE CLOSEST DOOR22

end23

gate 3 is recognized as a specific region inside the train station, from where
all agents inside it react to <Event1>.

Nevertheless, there are other events that can be modeled to simulate events
generated in real crowds. Table 6.1 presents some other possibilities of existent
behaviors in virtual crowds.

The next subsections present some images and information taken from real
crowds and the respective simulation using virtual crowds.

6.2.4 Simulating Real Scenes

To exemplify the relationship between virtual and real crowds, we chose two
filmed sequences to be simulated. One sequence deals with a group of people
passing through a door, and the other with a crowd entering a train in a sta-
tion. Filmed sequences were shot in the train and metro station in Lausanne,
Switzerland.

First Sequence: People Passing through a Door

For the first sequence, we filmed for about 10 minutes, approximately 40
people passing through a door to go in or come out from the gates in the
train station. Some variables were recognized:
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Table 6.1. Association between real and virtual crowd events

Real Crowd Events Virtual Crowd Behaviors

Group appears Split of the biggest group or merging of two smaller
groups

Group disappears Merging of groups

Group moves toward
specific direction

Walking toward specific direction (FRONT, BACK,
RIGHT, LEFT, FRONT RIGHT, . . . )

Group acts Play an animated keyframe sequence (clapping, danc-
ing, boohooing, etc.)

Group occupies all the
space

Adaptability of the group in order to occupy all the
space

Group walks in line try-
ing to have the same
trajectory

There is no adaptability behavior

Family walks together
in similar speeds

Flocking behavior

Groups are attracted to
a specific location

Attraction behavior

1. The maximum number of people on the screen was 7.
2. There were different ways of walking as well as different speeds.
3. At the most two agents form a group in this crowd. In addition, no event

is triggered during the sequence.
4. The directions of movement and objects to avoid (as well as regions to

walk) were identified and are shown in Figure 6.5.
First, we have modeled the environment in order to represent the char-

acteristics of the real space. Then, different goals and initial positions were
distributed to the crowd as well as the constraints of movement, e.g., the

Fig. 6.5. Spatial information came from the real crowd observation.
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Fig. 6.6. Open Inventor interface to specify interest points, regions to walk, and
goals of crowd.

regions where walking is possible and the objects to be avoided. Figure 6.6
shows the Open Inventor graphical interface (Open Inventor, 1984) we have
used to specify the geometrical information.

From the behavioral point of view, we applied only the seek goal behavior
to provide crowds which follow the programmed movement specified using the
graphical interface. Moreover, different ways of walking and different speeds
(which are randomly distributed among the groups and individuals) were used
to provide a more heterogeneous population. As there were no events occurring
in the real crowd sequence, no events were generated for the virtual crowds.
Figure 6.7 shows a screenshot of simulation using ViCrowd [MT01].

Second Sequence: People Waiting and Entering the Train

While the first sequence used only the programmed movement because there
were no events occurring, the second sequence used events and reactions in

Fig. 6.7. Image of virtual crowd simulation.
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Fig. 6.8. Real space: region to walk and train doors. People walking toward their
goals.

order to program the reaction of people when the train arrived. Each indi-
vidual should react based on the distance from the nearest door, as normally
occurs in real life. The images in Figures 6.1 and 6.8 present the real space as
well as the crowd goals.

From a geometrical point of view, the regions where agents can walk or
wait (stand up or sit) are also defined, as well as the doors where the crowd
can enter the train. Figure 6.9 shows the graphical interface used to specify
these geometrical attributes.

In the simulation, virtual agents arrived and were positioned in the region
as shown in Figure 6.9. When the train arrived in the gate, a crowd event was

Fig. 6.9. Interface to specify interest points and regions where autonomous crowd
should walk.
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Fig. 6.10. Crowd waiting for the metro and entering the metro.

generated: agents in this gate move to the nearest door and enter the train.
Also, other agents continue to arrive, after activation of the event. Figure 6.10
shows some images of this simulation.

6.3 Sociological Aspects

In order to provide some sociological behaviors that can be included in crowd
models, we can also study some effects investigated by sociologists and psy-
chologists related to a mass of people. For instance, the distance kept by
each individual (called personal space by sociologists) has the meaning of
isolating him/her from other people as well maintaining relationship with
them [Jef98]. In crowd models, the distance that separates individuals and
groups is important in order to apply the collision avoidance behaviors as well
as the communication.

Due to crowd requirements, we have focused only on a few sociological as-
pects found in the literature. They are subdivided into three parts: individual
aspects, group aspects, and sociological effects, which arise as a function of
people interaction.
Individual Aspects:

• The individual space treated in this section is dependent on the density.
It should be maintained in order to establish a group membership as well
as to avoid collision with another individual (privacy) [Jef98].

• Communication between individuals (who do not use media periph-
erals) can be applied between agents that are close to each other. To com-
municate, individuals use all the information they know: their intentions,
knowledge, and memory of past experiences, among others [Bel95].

Group Aspects:

• Social conventions observed relate to the behavioral rules defined in the
society to be simulated, as the social hierarchy where individuals follow
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group tendency. Yet, the past events that have been saved in the group
memory can be used to define social conventions [Jef98].

• People can group and desegregate as a function of personal or group
interest as well as the relationship with members of groups [Man85].

• One leader is someone who tries to influence or guide others. A crowd
may need to be guided by one or more leaders [Bel95].

Sociological Effects:

• These effect arise from the interaction between groups and individuals.
Some parameters are evaluated and can generate changes of groups and
individual behaviors [Rol81].

• Polarization occurs within a crowd when two or more groups adopt di-
vergent attitudes, opinions, or behavior and they may argue or fight even
if they do not know each other [Bel95].

• Changing of group structure. For example, a football match is a sit-
uation in which a group structure exists. When the players are children,
they do not obey the group structure existent in the social convention to
play football, but they run in mass to touch the ball [Man85].

• Domination happens when one or more leaders in a crowd influence the
others [McC89].

• Adding is the name given to the influence established by others and
applied to the group [Bel95].

• Loss of individualities happens when individuals assume crowd or group
behaviors, and act according to these behaviors [Bel95].

• When people feel interested in someone/something, people can be
attracted. Also, people can feel repulsion and try to stay away from
some person or object [Man85].

Basically, we consider these sociological aspects to change individual goals
and allow agents to change groups. Some of these effects can be perceived
only as emergent behaviors, for instance when individualities are lost and a
group tries to follow their leader.

6.4 Computer Vision for Crowds

A challenging problem in crowd simulation is how to generate the motion of
virtual agents based on real-life scenarios. For that purpose, it is necessary to
obtain the trajectories of actual people in real observed scenarios, and feed
them to the crowd simulator. For example, some authors [ALA∗01a, BJ03]
presented an approach for crowd simulation based on empirical observation of
real-life situations. However, it is clear that to observe real life and manually
extract information is a time-consuming task that requires large amounts of
human interaction.

A cheap and noninvasive technique for people tracking can be achieved by
using cameras combined with computer vision algorithms. Such algorithms
can be used to obtain the global motion of denser crowds [BV99], or extract
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the individual trajectory of each filmed person [WADP97,SG99,HHD00,KB03,
CGPP03,NTWH04,CC06,FV06,PTM06]. In fact, there are several methods
for people tracking reported in the literature, but tracking simultaneously
a large number of people (in particular, crowds) is still a challenge in the
computer vision community.

6.4.1 A Brief Overview on People Tracking

A large variety of methods have been proposed in the past years for people
tracking, employing a variety of approaches. Tracking can be performed using
one or more cameras, which can be color or monochromatic. By far, the most
common approach is to use a single static camera (color or monochromatic),
and the first step of tracking algorithms is typically background removal (also
called background subtraction) [WADP97, SG99,MJD∗00,HHD00,EDHD02,
CMC02,CGPP03,NTWH04,XLLY05,WTLW05,TLH05,CC06,FV06,JJM06,
ZvdH06]. In a few words, this step consists of obtaining a mathematical model
of the background, which is compared to each frame of the video sequence.
Then, pixels with sufficient discrepancy are considered foreground pixels, and
sets of connected pixels are usually called blobs.

One problem inherent to background subtraction is the undesired detec-
tion of shadows (or highlights) as foreground objects. Indeed, shadows may
connect isolated people in a scene, generating a single blob and probably com-
promising the performance of the tracking algorithm. Several algorithms have
been proposed for shadow identification and removal, some of them exploring
the expected chromatic invariance in shadowed regions (assuming that color
cameras are employed) [MJD∗00, EDHD02, KB03, CGPP03, GFK03, SB05],
and others using some kind of property based on luminance only (grayscale
cameras) [CMC02, XLLY05, WTLW05, TLH05, JJM06]. In general, methods
relying on chromatic information achieve more accurate detection of shadows,
but at a higher computational cost. On the other hand, algorithms that use
only luminance are more generic (they can be applied to monochromatic video
sequences), and tend to be faster.

Another desired characteristic for background removal is adaptation to
changes in the background. The background is usually not static in time
(there are variations due to illumination changes, objects that are dropped
or removed from the scene, etc.), and the background removal should adapt
accordingly. Although there are several methods for background adaptation,
the general form may be expressed as:

B(t + Δt) = f(B(t), I(t + Δt)) (6.1)

where B(t) is the background model at time t, B(t + Δt) is the updated
background model at time t + Δt, and f is a function that depends on the
previous background model B(t) and the current image I(t + Δt) that was
acquired by the camera.
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For object tracking itself, there are also several different approaches. Some
of them are briefly described below (for a more comprehensive review on
people tracking, the reader may refer to the survey papers [WS03, WHT03,
VV05,MHK06].

In the W4 system [HHD00], the vertical projections of foreground blobs
are used to estimate the position of the head. Isolated body parts are then
detected through a curvature analysis of the shape, and a grayscale textural
appearance model is combined with shape information to relate each person
in consecutive frames.

Pai and collaborators [PTL∗04] proposed an algorithm for pedestrian
tracking focused on traffic applications. After background subtraction with
shadow removal, a dynamical graph matching approach is employed to track
individual persons. The correlation metric is the Kullback–Leibler distance of
color histograms, quantized into 16 or 64 levels for each color channel. The
walking rhythm, which relates to the periodicity of human motion, is also
included to discriminate humans from other objects (such as vehicles). Adam
et al. [ARS06] used integral histograms and the Earth’s Moving Distance
(EMD) to perform the matching between two histograms. The integral his-
togram is based on multiple rectangular regions, and it is useful to match
only portions of the regions (that happens frequently in partial occlusions).
It should be noted that the approach proposed in [ARS06] does not rely on
background subtraction, and requires a manual initialization of the template
to be tracked.

In [KB03], tracking is performed by combining a motion model, shape,
and color features. The motion model is implemented using Kalman filters,
assuming that the acceleration of the object’s centroid is modeled as white
noise. The shape is roughly characterized by the dimensions of the bounding
box, and color information is introduced by matching color histograms.

Cheng and Chen [CC06] proposed a tracking algorithm that relies on
wavelet coefficients of the input video sequence. The authors claim that sev-
eral “fake motions” (such as moving branches and leaves) can be detected in
high-frequency wavelet coefficients, and then distinguished from the motion
of actual objects. For identifying and tracking actual moving objects, each
blob is characterized by shape and color features (such as height and width
of bounding box, mean and standard deviation in each color channel), which
are stored in a feature vector and compared to each foreground blob.

In [YLPL05], a tracking algorithm focused on long-term occlusions was
presented. After background removal, the authors check for splitting or merg-
ing of blobs, detecting possible occlusions. Then, color information is used
to characterize each blob, and the Kullback–Leibler distance is employed for
histogram matching.

It is important to note that this section presented just a brief overview
of people tracking in video sequences, focusing on approaches based on static
cameras. There are several other methods for people/object tracking, such
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as methods based on optical flow (using the KLT tracker [LK81, ST94], or
SIFT [Low04]), among others. A more comprehensive overview on tracking
can be found in the survey papers [WS03,WHT03,VV05,MHK06].

6.5 An Approach for Crowd Simulation
Using Computer Vision

This section presents an approach for crowd simulation based on information
from real life captured automatically using computer vision algorithms. This
method is focused on the motion of virtual agents (preferred directions, speeds,
etc.), and does not deal with individual actions (sitting, grabbing, pointing,
etc.). A brief summary of this method is provided below.

1. Use computer vision algorithms to track the trajectory of each filmed
individual.

2. Group coherent trajectories into “motion clusters,” based on the main
direction of each trajectory.

3. Compute an extrapolated velocity field for each motion cluster.
4. Apply a crowd simulator that uses the extrapolated velocity fields to guide

virtual humans.

Next, each of these steps is described in more detail.

6.5.1 Using Computer Vision for People Tracking

As described in Section 6.4.1, there are several methods based on com-
puter vision for tracking individual persons in filmed video sequences, such
as [EDHD02,CGPP03,NTWH04,TLH05,CC06,PTM06]. However, most algo-
rithms for people tracking are focused on surveillance applications, where an
oblique (or almost lateral) view of the scene is required (to recognize faces).
Such camera setups often result in occlusions, and mapping from image pixels
to world coordinates may not be accurate (due to camera projection). Since
the main goal is to extract trajectories for each individual in world coordi-
nates, it is advisable to use a camera setup that provides a normal view with
respect to the ground (thus reducing perspective problems and occlusions).
In fact, the mapping from pixel coordinates (x, y) to world coordinates (u, v)
in such camera setups is trivial (assuming planar projective mapping):

u = ax, v = by (6.2)

where a and b are related to the focal length of the camera (and distance
from the ground). Radial distortion close to image boundaries can also be
corrected when necessary [Dav05], but we do not consider such distortion
for our purposes. Also, Equation 6.2 indicates that persons have the same
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dimensions at all positions, indicating that an area thresholding technique
may be used for people detection.

A common approach for object tracking for static cameras is to ap-
ply background subtraction techniques, which isolate foreground objects
from static background pixels. There are several algorithms for background
subtraction reported in the literature, such as [HHD00, EDHD02, CMC02,
CGPP03,NTWH04,XLLY05,WTLW05,TLH05,CC06,JJM06,FV06]. In par-
ticular, shadows usually produce spurious foreground pixels that may influ-
ence the tracking algorithm. Some background subtraction algorithms already
include some kind of treatment for shadows [CMC02, EDHD02, CGPP03,
XLLY05, WTLW05, TLH05, JJM06], and a subset is suited for monochro-
matic video sequences (which are more generic and faster to process), such
as [CMC02,XLLY05,WTLW05,TLH05,JJM06]. Results presented in this sec-
tion were generated using the algorithm described in [JJM06], due to its sim-
plicity, speed, and adaptation to illumination changes (including shadows and
highlights).

After obtaining foreground pixels, it is necessary to determine the set
of connected pixels (or blob) that relates to each individual to be tracked.
It is important to note that the expected longitudinal projection of a per-
son in oblique-lateral views is explored by several tracking algorithms, such
as [HHD00,EDHD02,CC06,FV06]. However, such hypothesis clearly does not
apply for top-view cameras, requiring a different strategy for people tracking.
In fact, the projection of a person in a top-view camera setup is roughly el-
liptic. Furthermore, the person’s head is a relatively invariant feature in such
camera setups, indicating that tracking can be performed through template
matching.

When a new blob is detected in the scene, a threshold is used to discard
blobs with small area. The center of the person’s head is expected to be at the
center of the blob (innermost position). To find the template T that corre-
sponds approximately with the head, the Distance Transform (DT) is applied
to the negative of each foreground blob (i.e., the blob exterior is considered
the foreground object). The global maximum of the DT corresponds to the
center of the largest circle that can be inscribed in the blob, and it provides
an estimate of the person’s head center.

If the blob area exceeds a certain threshold (in this analysis, we used three
times the minimum area value), then such a blob is probably related to two
or more connected persons, as in the rightmost blob in Figure 6.11(b). In this
case, not only the global maximum of the DT is analyzed, but also the local
maxima with largest values. If the distance between the global maximum
and a certain local maximum is larger than the diameter of the template
(so that templates do not overlap), such local maximum is also considered a
head center, as shown in the rightmost blob of Figure 6.11(c). Figure 6.11(a)
illustrates the corresponding frame, along with head centers and correlation
templates. It is important to note that the procedure for detecting individual
templates belonging to the same blob may fail when people enter the scene
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(a)

(b)

(c)

Fig. 6.11. (a) Frame of a video sequence, with detected center heads and correlation
templates. (b) Result of background subtraction. (c) Distance transform and its
maxima, which are used to detect head centers.

forming a compact cluster, which generates a blob without a recognizable
geometry. In such cases, individual persons will only be detected when the
cluster breaks apart.

The next step is to identify template T in the following frame. Although
there are several correlation metrics designed for matching a small template
within a larger image, Martin and Crowley [MC95] indicated that the Sum of
Squared Differences (SSD) provides a more stable result than other correlation
metrics in generic applications, leading us to use the SSD as the correlation
metric. It should be noticed that more generic object tracking methods (such
as the covariance tracking described in [PTM06]) can be used instead of the
SSD, but with additional computational cost.

Although the head is a good choice for the correlation template, head
tilts and illumination changes may vary the gray levels within the template.
Also, the procedure for selecting the initial template may not detect exactly
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the center of the head. To cope with such situations, T is updated every N
frames (a recommended choice is N = 5 for sequences acquired at 15 FPS).

As a result of our tracking procedure, we can determine the trajectory
(and hence the velocity) of each person captured by the camera. Extracted
trajectories can be used directly in some simulators (e.g., [BJ03,MH04]), but
other simulators require a vector field that provides the desired velocity for
each person at each point of the image (e.g., [HM97,HFV00,BMB03,Che04]).
Such extrapolated vector field can be computed using all trajectories extracted
automatically using computer vision. However, people walking in opposite
directions may generate a null extrapolated velocity field at some positions,
which would cause the virtual agent to stop. A better approach is to group
trajectories into “coherent” clusters, and compute an extrapolated velocity
field for each of these clusters. A possible approach for generating such clusters
is described next.

6.5.2 Clustering of Coherent Trajectories

The definition of coherent (or similar) trajectories is very application depen-
dent. For instance, Junejo et al. [JJS04] used envelope boundaries, velocity,
and curvature information as features to group similar trajectories. Makris
and Ellis [ME05] also used envelope boundaries to determine main routes
from filmed video sequences. In both approaches, the spatial distance between
trajectories is an important feature in the clustering procedure. For purposes
of virtual human simulation, we believe that coherent trajectories are those
having approximately the same displacement vectors (e.g., two trajectories
going from left to right are coherent, regardless of their mean speed and the
distance between them). For automatic classification and grouping of coher-
ent trajectories, it is necessary to extract relevant features and then apply an
unsupervised clustering technique, as explained next.

Let (x(s), y(s)), s ∈ [0, 1], denote a trajectory reparametrized by arc length
(normalized to unity), so that (x(0), y(0)) is the start point and (x(1), y(1))
is the end point of the trajectory. Each trajectory is then characterized by a
set of N displacement vectors di = (Δxi, Δyi) computed at equidistant arc
lengths:

di = (x(ti+1) − x(ti), y(ti+1) − y(ti)) (6.3)

where ti = i/N , for i = 0, ..., N−1. Then, each trajectory j is represented by a
2N -dimensional feature vector fj , obtained by combining the N displacement
vectors associated with the trajectory:

fj = (Δx0, Δy0, Δx1, Δy1, ..., ΔxN−1, ΔyN−1) (6.4)

Coherent trajectories tend to produce similar feature vectors f . Hence, a set of
coherent trajectories is expected to produce a cluster in the 2N -dimensional
space, which is modeled as a Gaussian probability distribution characterized
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by its mean vector and covariance matrix. Since each cluster relates to a differ-
ent Gaussian function, the overall distribution considering all feature vectors
fj is a mixture of Gaussians. The number of Gaussians in the mixture (which
corresponds to the number of clusters), as well as the distribution parame-
ters of each individual distribution can be obtained automatically using the
unsupervised clustering algorithm described in [FJ02].

The number N of displacement vectors used to assemble fj is chosen based
on how structured the flow of people is. For relatively simple trajectories, small
values of N can capture the essence of the trajectories. On the other hand,
more complicated trajectories (with many turns) are better characterized us-
ing larger values of N . In general, public spaces (such as sidewalks, parks,
center towns, among others) tend to present main flow directions, and N = 1
or N = 2 is usually enough to identify different clusters. It should be noted
that, as N increases, the dimension of the feature vectors increases, and a
larger number of samples is needed for a reliable estimation of the Gaussian
distributions. At the same time, unstructured motion (e.g., football players
in a match, or kids playing) requires larger values of N to summarize the de-
sired trajectories, and a very large number of samples would be needed for the
clustering algorithm. Hence, the proposed method is, in general, not suited to
unstructured motion.

An example of automatic clustering of similar trajectories is illustrated in
Fig. 6.12. It shows a portion of a corridor, where people move from top to
bottom or bottom to top. All the trajectories of people going up were correctly
grouped together (shown in red), as well as trajectories of people coming down
(shown in green).

Fig. 6.12. Result of trajectory clustering.
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6.5.3 Generation of Extrapolated Velocity Fields

After grouping similar trajectories into clusters, it is necessary to generate a
velocity field for each cluster that provides the instantaneous velocity for each
virtual agent at each position in the viewing field of the camera. There are dif-
ferent approaches to obtain dense vector fields from sparse ones, varying from
traditional interpolation/extrapolation techniques, such as nearest neighbor,
linear, cubic, and splines [Wat92], to more sophisticated methods, such as
gradient vector fields [XP98]. However, in most scenarios there are no tracked
trajectories at image borders, indicating that extrapolation techniques should
be used instead of interpolation. In fact, interpolation by nearest neighbor
can be easily extended for extrapolation, and it does not propagate the error
in the extrapolated regions as much as other interpolation techniques (such
as linear or cubic), because it is basically a piecewise-constant function. An-
other possible way to generate the full vector field is to use radial-basis-like
functions [DR02], but all results presented in this section were generated using
nearest-neighbor interpolation/extrapolation.

An example of velocity field is shown in Figure 6.13, which illustrates the
extrapolated velocity fields related to the two clusters shown in Fig. 6.12. In
fact, this example illustrates two “layers” of velocity fields, where each layer
relates to a different cluster of coherent trajectories.

6.5.4 Simulation Based on Real Data

The final step of the approach is to feed the extrapolated velocity fields into a
crowd simulator. As explained before, there are several existing crowd simu-
lators that accept/require as input the desired velocity for each agent at each
time step, such as [HM97, Rey99, HFV00, BMB03, Che04]. In this book, we
show some simulation results using the physically based approach proposed
in [HFV00], but other simulators could have been used instead.

In a few words, this model is based on a particle system where each parti-
cle i of mass mi has a predefined velocity vg

i (goal velocity, typically pointing
toward exits of the virtual environment) to which it tends to adapt its in-
stantaneous velocity vi within a certain time interval τi. Simultaneously, each
particle i tries to keep a velocity-dependent distance from other entities j and
walls w, controlled by interaction forces fij and fiw, respectively. The change
of velocity in time t for each particle i is given by the following dynamical
equation:

mi
dvi

dt
= mi

vg
i − vi(t)

τi
+

∑

j �=i

fij +
∑

w

fiw (6.5)

When the simulation is initialized, each new agent is related to only one
layer of velocity fields (such assignment is proportional to the number of real
people related to each layer in the filmed video sequence). Then, the desired
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(a)

(b)

Fig. 6.13. Extrapolated velocity fields for the two trajectory clusters shown in
Figure 6.12.

velocity vg
i of agent i is obtained from its layer of extrapolated velocity fields

vtracked at the agent’s current position, and Equation 6.5 is used to perform
the simulation. It should be noted that, although each agent is associated
with only one layer of velocity field, it can “see” all agents in all layers (and
also information about the virtual environment such as walls and obstacles,
which are accessible for all agents in all layers). Moreover, the radial repulsion
force introduced by agents and obstacles in Helbing’s model (see Equation 6.5)
guarantees collision-free trajectories. Hence, agents tend to follow main direc-
tions provided by the velocity fields, and at the same time they avoid collisions
with obstacles and other agents.

It is important to note that, in denser crowds, the movement of each person
includes not only his/her desired paths, but also a great amount of interactions
with the environment and other people (in the sense of collision avoidance),
as noted in [HBJW05]. Hence, it is suggested to film the environment with
a smaller number of people (nondense crowds) to capture more accurately
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the intentions of each person. The simulation can be performed with a larger
number of agents, and the expected interactions among people in the dense
simulated crowd are taken into account by using Equation 6.5. On the other
hand, if we have footage of a dense crowd (which contains the inherent in-
teractions among people), it is not easy to simulate the same scenario with a
smaller number of agents without “undoing” the registered interactions.

6.5.5 Some Examples

To illustrate the approach described in this section, we used filmed video
sequences of a T-shaped region. This scenario presents diversity of trajectories;
resulting in four trajectory clusters (layers), as illustrated with different colors
in Figure 6.14 (circles indicate starting points of each trajectory).

This scenario presents particular characteristics that make people move
with different speeds depending on the region in which they are walking. In
particular, there is a set of stairs (region B in Figure 6.15(a)) that connects
two roughly flat plateaus (for camera calibration and simulation purposes we
considered that the region is planar, since the difference of the plane heights is
small compared to the height of the camera). In fact, Table 6.2 indicates that
filmed people clearly slow down when climbing up or down the stairs when
compared to flat regions (A and C in Figure 6.15(a)).

We simulated this environment with approximately the same number of
people as in the filmed video sequence (a snapshot is presented in
Figure 6.15(b)). As shown in Table 6.2, the simulated experiment yielded re-
sults similar to the filmed sequence, and virtual humans also kept the tendency
of reducing their speed in the region of the stairs. It should be emphasized
that velocity fields used in this simulation were obtained in a fully automatic
way (from people tracking to automatic clustering).

We also analyzed the influence of increasing the number of simulated
agents, using the velocity fields obtained with a smaller number of people.

Fig. 6.14. Different layers of velocity fields for the T-intersection scenario.
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(a)

(b)

(c)

Fig. 6.15. (a) Regions used for quantitative validation. (b) Snapshot of simulation
with a small number of agents. (c) Snapshot of simulation with a large number of
agents.
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Table 6.2. Quantitative metrics for evaluating the T-intersection scenario with 20
agents

Region Dir.
Video (speed) Simulation (speed)
mean std mean std

A
→ 0.96 m/s 0.17 m/s 0.84 m/s 0.26 m/s
← 1.00 m/s 0.19 m/s 0.91 m/s 0.21 m/s

B
↓ 0.52 m/s 0.33 m/s 0.48 m/s 0.30 m/s
↑ 0.53 m/s 0.29 m/s 0.58 m/s 0.29 m/s

C
→ 1.03 m/s 0.20 m/s 0.89 m/s 0.27 m/s
← 1.06 m/s 0.20 m/s 0.99 m/s 0.23 m/s

Table 6.3. Quantitative metrics for evaluating the T-intersection scenario with 150
agents

Region Dir.
Simulation (speed)
mean std

A
→ 0.81 m/s 0.26 m/s
← 0.90 m/s 0.28 m/s

B
↓ 0.35 m/s 0.31 m/s
↑ 0.31 m/s 0.27 m/s

C
→ 0.78 m/s 0.33 m/s
← 0.85 m/s 0.34 m/s

Such experiments can be useful to predict the flow of people in public spaces
during special occasions (e.g., a shopping mall near Christmas). We extrap-
olated the number of people for the T-intersection scenario from 20 to 150
agents, as illustrated in Figure 6.15(c). Average speeds in regions A, B, and C
for this experiment are shown in Table 6.3. As expected, such average speeds
were reduced compared with the experiment performed with 20 agents, partic-
ularly in region B. In fact, this crowded scenario produces traffic jams, which
can be observed more evidently in regions with spatial constraints, such as the
relatively narrow stairway. It is important to observe that all crowds in this
scenario (filmed, simulated with same number of agents as filmed sequence
and extrapolating number of agents) present similar characteristics (spatial
formation, decreasing velocities as a function of stairs and corridors).

6.6 Final Remarks

This chapter presented different approaches for using real-life data to improve
the realism of crowd simulation. Some of the methods described in the chapter
require a visual inspection of the filmed (real) scene, and a manual calibration
of parameters in the simulated scenario. However, there is a great potential
for using computer vision algorithms to automatically extract information
from filmed video sequences. Although this brief review focused on people
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tracking, several other aspects can be tackled using computer vision, such
as tracking of individual body parts (for vision-based motion capture, for
instance), detection of events [ORP00,GX03,DCXL06], and others. Reviews
on vision-based analysis of human dynamics can be found in [WS03,WHT03,
VV05,MHK06].
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Crowd Rendering

7.1 Introduction

In this chapter, we focus on the technical aspect of real-time crowd simulation,
and how an efficient architecture can be developed. But first, it is important
to identify the main goals to achieve. We need:

• Quantity: real-time simulation of thousands of characters,
• Quality: state-of-the-art virtual humans,
• Efficiency: storage and real-time management of massive crowd data,
• Versatility: adaptation to diversified environments and situations.

The main problem when dealing with thousands of characters is the quan-
tity of information that needs to be processed for each one of them. Such a
task is very demanding, even for modern processors. Naive approaches, where
virtual humans are processed one after another, in no specific order, pro-
voke costly state switches for both the CPU and GPU. For an efficient use of
the available computing power, and to approach hardware peak performance,
data flowing through the same path need to be grouped. We thus present
an architecture able to handle, early in its pipeline, the sorting of virtual
human related data into grouped slots. We show results of thousands of simu-
lated characters. As for the quality, we display state-of-the-art virtual humans
where the user attention is focused. Characters capable of facial and hand an-
imation are simulated in the vicinity of the camera to improve believability,
while farther, less expensive representations are used. Concerning efficiency
of storage and data management, we mainly employ a database to store all
the virtual human-related data. Finally, the presented architecture is versatile
enough to be stressed in very different scenarios, e.g., in confined environments
like an auditorium or a classroom, and also in large-scale environments like a
crowded fun fair or city.

In this chapter, we first introduce in Section 7.2 how the virtual humans
can be represented, along with their different levels of detail, depending on
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their distance and eccentricity to the camera. Then, in Section 7.3, we fully
detail our architecture pipeline, and how the virtual human related data are
sorted in order to be processed faster. In Section 7.4, we introduce the motion
kit, a data structure specifically developed for managing the different levels
of detail at the animation stage. The storage and management of unchanging
data with a dedicated database is developed in Section 7.5. In Section 7.6, we
introduce a shadow mapping algorithm applied to a crowd. Finally, in Sec-
tion 7.7, we show some results obtained with a crowd architecture developed
by authors.

7.2 Virtual Human Representations

In an ideal world, graphic cards are able, at each frame, to render an infinite
number of triangles with an arbitrary complex shading on them. To visualize
crowds of virtual humans, we would simply use thousands of very detailed
meshes, e.g., capable of hand and facial animation. Unfortunately, in spite of
the recent programmable graphics hardware advances, we are still compelled
to stick to a limited triangle budget per frame. This budget is spent wisely to
be able to display dense crowds without too much perceptible degradations.
The concept of levels of detail (LOD), extensively treated in the literature
(see [LRC∗02]), is exploited to meet our real-time constraints. We specifi-
cally discuss levels of detail for virtual humans composing a crowd: depending
on the location of the camera, a character is rendered with a specific represen-
tation, resulting from the compromise of rendering cost and quality. In this
Section, we first introduce the data structure we use to create and simulate
virtual humans: the human template. Then, we describe the three levels of
detail a human template uses: the deformable mesh, rigid mesh, and finally
the impostor.

7.2.1 Human Template

A type of human such as a woman, man, or child is described as a human
template, which consists of:

• A skeleton, composed of joints, representing articulations,
• A set of meshes, all representing the same virtual human, but with a

decreasing number of triangles,
• Several appearance sets, used to vary its appearance (see Chapter 3),
• A set of animation sequences which it can play.

Each rendered virtual human is derived from a human template, i.e., it is
an instance of a human template. In order for all the instances of the same
human template to look different, we use several appearance sets, which us
allow to vary the texture applied to the instances, as well as modulate the
colors of the texture.
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7.2.2 Deformable Mesh

A deformable mesh is a representation of a human template composed of
triangles. It is enveloping a skeleton of 78 joints, used for animation: when the
skeleton moves, the vertices of the mesh follow smoothly its joint movements,
similarly to our skin. We call such an animation a skeletal animation. Each
vertex of the mesh is influenced by one or a few joints. Thus, at every keyframe
of an animation sequence, a vertex is deformed by the weighted transformation
of the joints influencing it, as follows:

v(t) =
n∑

i=1

Xt
i X

−ref
i vref (7.1)

where v(t) is the deformed vertex at time t, Xt
i is the global transform of joint

i at time t, X−ref
i is the inverse global transform of the joint in the reference

position, and vref is the vertex in its reference position. This technique is
known as skeletal subspace deformation, or skinning [Lan98].

The skinning can be efficiently performed by the GPU: the deformable
mesh sends the joint transformations of its skeleton to the GPU, which takes
care of moving each vertex according to its joint influences. However, it is
important to take into account the limitations of today’s graphic cards, which
can store only up to 256 atomic values, i.e., 256 vectors of 4 floating points. The
joint transformations of a skeleton can be sent to the GPU as 4×4 matrices,
i.e., four atomic values. This way, the maximum number of joints a skeleton
can have reaches

256
4

= 64 (7.2)

When wishing to perform hand and facial animation, 64 bones are not
sufficient. Our solution is to send each joint transformation to the GPU as a
unit quaternion [Sho85] and a translation, i.e., two atomic values. This allows
doubling the number of joints possible to send. Note that one usually does
not wish to use all the atomic structures of a GPU exclusively for the joints
of a skeleton, since it usually is exploited to process other data.

Although rendering deformable meshes is costly, due to the expensive ver-
tex skinning and joint transmission, it would be a great quality drop to do
without them:

• They are the most flexible representation to animate, allowing even for
facial and hand animation (if using a sufficiently detailed skeleton).

• Such animation sequences, called skeletal animations, are cheap to store:
for each keyframe, only the transformation of deforming joints, i.e., those
moved in the animation, need to be kept. Thus, a tremendous quantity
of those animations can be exploited in the simulation, increasing crowd
movement variety.
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• Procedural and composited animations are suited for this representation,
e.g., idle motions can be generated on-the-fly [EGMT06].

• Blending is also possible for smooth transitions between different skeletal
animations.

Unfortunately, the cost of using deformable meshes as the sole representa-
tion of virtual humans in a crowd is too prohibitive. We therefore use them in
a limited number and only at the fore-front of the camera. Note that before
switching to rigid meshes, we use several deformable meshes, keeping the same
animation algorithm, but with a decreasing number of triangles.

Skilled designers are required to model skinned and textured deformable
meshes. But once finished, they are automatically used as the raw material to
derive all subsequent representations: the rigid meshes and the impostors.

7.2.3 Rigid Mesh

A rigid mesh is a precomputed geometric posture of a deformable mesh, thus
sharing the very same appearance. A rigid animation sequence is always in-
spired from an original skeletal animation, and from an external point of view,
both look alike. However, the process to create them is different. To compute
a keyframe of a rigid animation, the corresponding keyframe for the skeletal
animation is retrieved. It provides a skeleton posture (or joint transforma-
tions). Then, as a preprocessing step, each vertex is deformed on the CPU, in
opposition to a skeletal animation, where the vertex deformation is achieved
online, and on the GPU. Once the rigid mesh is deformed, it is stored as a
keyframe, in a table of vertices, normals (3D points), and texture coordinates
(2D points). This process is repeated for each keyframe of a rigid animation.
At runtime, a rigid animation is simply played as the succession of several pos-
tures or keyframes. There are several advantages in using such a rigid mesh
representation:

• It is much faster to display, because the skeleton deformation and vertex
skinning stages are already done and stored in keyframes.

• The communication between the CPU and the GPU is kept to a minimum,
since no joint transformation needs to be sent.

• It looks exactly the same as the skeletal animation used to generate it.

The gain in speed brought by this new representation is considerable. It is
possible to display about 10 times more rigid meshes than deformable meshes.
However, the rigid meshes need to be displayed farther from the camera than
deformable meshes, because they allow for neither procedural animations nor
blending, and no composited, facial, or hand animation is possible.

7.2.4 Impostor

Impostors are the less detailed representation, and extensively exploited in
the domain of crowd rendering [TLC02b,DHOO05a]. An impostor represents
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a virtual human with only two textured triangles, forming a quad, which is
enough to give the wanted illusion at long range from the camera. Similarly
to a rigid animation, an impostor animation is a succession of postures, or
keyframes, inspired from an original skeletal animation. The main difference
with a rigid animation is that it is only a 2D image of the posture that is
kept for each keyframe, instead of the whole geometry. Creating an impostor
animation is complex and time consuming. Thus, its construction is achieved
in a preprocessing step, and the result is then stored into a database in a
binary format (see Section 7.5), similarly to a rigid animation. We detail here
how each keyframe of an impostor animation is developed. The first step when
generating such a keyframe for a human template is to create two textures,
or atlas:

• A normal map, storing in its texels the 3D normals as RGB components.
This normal map is necessary to apply the correct shading to the virtual
humans rendered as impostors. Indeed, if the normals were not saved, a
terrible shading would be applied to the virtual human, since it is repre-
sented with only two triangles. Switching from a rigid mesh to an impostor
would thus lead to awful popping artifacts.

• A UV map, storing in its texels the 2D texture coordinates as RG com-
ponents. This information is also very important, because it allows one
to apply correctly a texture to each texel of an impostor. Otherwise, we
would need to generate an atlas for every texture of a human template.

Since impostors are only 2D quads, we need to store normals and texture
coordinates from several points of view, so that, at runtime, when the camera
moves, we can display the correct keyframe from the correct camera view
point. In summary, each texture described above holds a single mesh posture
for several points of view. This is why we also call such textures atlas. We
illustrate in Figure 7.1 a 1024×1024 atlas for a particular keyframe. The top
of the atlas is used to store the UV map, and its bottom the normal map.

The main advantage of impostors is that they are very efficient, since
only two triangles per virtual human are displayed. Thus, they constitute the
biggest part of the crowd. However, their rendering quality is poor, and thus
they cannot be exploited close to the camera. Moreover, the storage of an
impostor animation is very costly, due to the high number of textures that
need to be saved.

We summarize in Table 7.1 and Figure 7.2 the performance and animation
storage for each virtual human representation. Observe that each step down
the representation hierarchy allows one to increase by an order of magnitude
the number of displayable characters. Also note that the faster the display of
a representation is, the bigger the animation storage. Moreover, rigid meshes
and impostors are stored in GPU memory, which is usually much smaller than
CPU memory. Figure 7.3 summarizes the shared resources inside a human
template.
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Fig. 7.1. A 1024×1024 atlas storing the UV map (above) and the normal map
(below) of a virtual human performing a keyframe of an animation from several
points of view.

Table 7.1. Storage space in [Mb] for 1 second of an animation clip of (a) deformable
meshes, (b) rigid meshes, and (c) impostors

Max Displayable Animation Animation Sequence Memory
Number @30Hz Frequency[Hz] Storage[Mb/s] Location

(a) Deformable Meshes 2̃00 25 0̃.03 CPU

(b) Rigid Meshes 2̃000 20 0̃.3 GPU

(c) Impostors 2̃0000 10 1̃5 GPU
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Fig. 7.2. Storage space in [Mb] for 1 second of an animation clip of (a) a deformable
mesh, (b) a rigid mesh, and (c) an impostor.

7.3 Architecture Pipeline

Modeling a varied crowd of virtual humans, individual by individual, mesh by
mesh, and texture by texture, would be extremely time consuming and would
also require an army of dedicated skilled designers. Moreover, it would pose an
evident storage problem. We adopt a different strategy to model such a crowd,
and concentrate our efforts on creating only a few human templates. From
this reduced set, we then instantiate thousands of different characters. We
use different techniques to obtain variety each time a character is instantiated
from a human template. More details on the specific variety methods can be
found in Chapter 3.

In this section, we describe the main stages of the architecture pipeline
along with the data flowing through them. Figure 7.4 depicts the different
stages: at each frame, data are flowing sequentially through each one of them,
beginning from the top, down to the bottom. Simulating a crowd of virtual
humans is an extremely demanding task, even for modern processors. An
architecture sustaining thousands of realistic characters needs to be “hardware-
friendly.” Indeed, simple approaches, i.e., treating virtual humans in no par-
ticular order, “as they come,” tend to produce too many state switches for
both the CPU and GPU. A more efficient use of the available computing
power is recommended, in order to get closer to hardware peak performance.
Data flowing through the same path of the pipeline need to be grouped. As a
consequence, at the beginning of each new frame, care is taken to batch data
together into predefined slots.
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Fig. 7.3. Shared resources between representations inside a human template.
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Fig. 7.4. Crowd architecture pipeline.

7.3.1 Human Data Structures

Virtual human instances are shared in several data structures, and a unique
identifier is associated with each one of them. Our crowd data structure is
mainly composed of two arrays: an array of body entities and an array of
brain entities. The unique identifier of each virtual human is used to index
these arrays and retrieve specific data, which is distributed in a body and
brain entity. Body data consist of all the parameters used at every frame,
like the position and orientation of the virtual human. Brain data are more
related to behavior parameters, and are less regularly exploited. By separat-
ing these parameters from the body entity, we tighten the storage of very
often used data. Indeed, such a regrouping improves performance: in a recent
work [PdHCM∗06a], while experimenting on different steering methods, we
observed that with a very large number of characters (tens of thousands), the
performance of the different methods was about the same. Memory latency
to jump from an instance to the other was the bottleneck when dealing with
big crowds.
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7.3.2 Pipeline Stages

In this section, we first provide a short reminder on navigation graphs (see
Chapter 4). Then, we detail the stages of the pipeline illustrated in Figure 7.4.

For a given scene, a navigation graph is provided and used to steer virtual
humans along predefined paths. The graph is composed of a set of vertices,
represented in the scene as vertical cylinders where no collision with the en-
vironment can occur. Two vertices can be connected by an edge, represented
as a gate between two overlapping cylinders (see Figure 7.5 on the bottom
right). When several cylinders overlap, their consecutive gates delimit a cor-
ridor. In the scene, a path to follow is defined as a sequence of gates to reach
one after the other, i.e., simple subgoals for the chosen steering method. A
navigation graph with apparent vertices and gates is pictured in Figure 7.5
on the bottom right. During simulation, each vertex keeps a list of the ids of
virtual humans currently traveling through it. Chapter 5 is mainly devoted to
navigation graphs and their construction from an arbitrary polygonal scene.
Here follows a detailed description of each pipeline stage.

Fig. 7.5. Top left: virtual humans navigating in a complex environment. Top right:
similar image with apparent levels of detail. In red: the rigid meshes; in green: the
impostors. Bottom left: dense crowd in a large environment. Bottom right: virtual
humans steering along a path sustained by a navigation graph structure (in green
and white). Overlapping vertices form gates (in red). Consecutive gates on the path
form corridors (in black).
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The LOD Selector is the first stage of the pipeline. It receives as input
a navigation graph filled with virtual human ids and the camera view frus-
tum. The role of the LOD Selector entity is to categorize graph vertices, i.e.,
to score each of them for further processing. We have two different scores
to attribute to each vertex: a level of detail (LOD) and a level of simu-
lation (LOS). They are both determined by finding the distance from the
vertex to the camera and its eccentricity from the middle of the screen.
The LOD score is used to choose the appropriate virtual human represen-
tation inside the vertex, and the LOS score allows one to choose the suitable
collision avoidance algorithm, along with the frequency of the simulation.
Indeed, the structure of the navigation graph already allows one to avoid
collisions between the characters and the environment and is also used to
decompose a complex goal into simple reachable subgoals. However, with-
out further treatment, virtual humans navigate independently of each other,
without attempting to avoid interpenetrations. The resulting effect tends to
look like a simulation of awkward “ghosts.” Thus, it is important to provide
a robust collision handling method for at least virtual humans in the vicinity
of the camera. Farther away, characters use an approximate but less costly
method.

The LOD Selector uses the navigation graph as a hierarchical structure to
avoid testing individually each character. The processing of data is achieved
as follows: first, each vertex of the graph is tested against the camera view
frustum, i.e., frustum culled. Empty vertices are not even scored, nor further
held in the process for the current frame; indeed, there is no interest to keep
them in the subsequent stages of the pipeline. On the other hand, vertices
filled with at least one character and outside the camera view are kept, but
they are not assigned any LOD score, since they are outside the view frustum,
and thus, their virtual humans are not displayed. As for their LOS score, they
get the lowest one. Indeed, even if they are not in the camera field, virtual
humans contained in these vertices need a minimal simulation to sporadically
move along their path. Without care, when they quit the camera field, they
immediately stop moving, and thus, when the camera changes its point of
view, packages of stagnant characters suddenly move again, causing a dis-
turbing effect for the user. Finally, the vertices that are filled and visible are
assigned a LOS score, and then are further investigated to sort their embedded
virtual humans by human template, LOD, and appearance set.

At the end of this first stage, we obtain two lists. The first one contains
all virtual human ids, sorted by human template, by LOD, and finally by
appearance set. The second list contains occupied vertices, sorted by LOS.
Obtaining such lists takes some time. However, it is very useful to group
data and process through the next stages of the pipeline. We illustrate in the
following pseudo-code how the first list is typically used in the next stages of
the pipeline.

The second stage is the Simulator, which uses the second list to iterate
through all LOS slots and obtain the corresponding filled vertices. At this
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Algorithm 12:
begin1

for each human template: do2

apply human template common data operations, e.g., get its skeleton3

for For each LOD: do4

apply LOD common data operations, e.g., enable LOD specific5

shader program
for For each appearance set: do6

apply appearance set common data operations, e.g., bind it7

for For each virtual human id: do8

get body or brain structure from the id9

apply operations on it10

end11

end12

end13

end14

end15

stage, virtual humans are considered as individual 3D points. Each of them
knows the next subgoal to reach, i.e., the next gate to attain. Depending on
the LOS, the proper steering method is then applied. Virtual humans detected
as crossing a gate get a new subgoal and are assigned to special slots used
later by the Behavior stage. Note that collision avoidance between pedestrians
is not performed at this stage, but later in the pipeline.

The Animator is responsible for the animation of the characters, whichever
representation they are using. The slots of visible virtual humans, sorted by
human template, LOD, and appearance set in the LOD Selection phase, are
the main data structure used in this stage. Below is described the specific
tasks that are achieved for the deformable meshes.

Since the virtual humans are also sorted by LOD, we can iterate over the
deformable meshes without having to check that they actually are deformable.
Performing a skeletal animation, whether it is for the face, the hands, or all the
joints of a virtual human, can be summarized in four steps. First, the correct
keyframe, depending on the animation time, is retrieved. Note that at this
step, it is possible to perform a blending operation between two animations.
The final keyframe used is then the interpolation of the ones retrieved from
each animation. The second step is to duplicate the original skeleton relative
joint matrices in a cache. Then, in the cache, the matrices of the joints modified
by the keyframe are overwritten. Finally, all the relative matrices (including
those not overwritten) are concatenated to obtain world transforms, and each
of them is post-multiplied by the inversed world matrices of the skeleton. Note
that optional animations, like the facial animation, are usually performed
only for the best deformable mesh LOD, i.e., the most detailed mesh, at the
forefront.
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Algorithm 13:
begin1

for each human template: do2

get its skeleton, for each deformable mesh LOD: do3

for each appearance set: do4

for each virtual human id: do5

get the corresponding body6

update the animation time (between 0.0 and 1.0)7

perform general skeletal animation8

perform facial skeletal animation9

perform hand skeletal animation10

end11

end12

end13

end14

end15

For the rigid meshes, the role of the Animator is much reduced, since all
the deformations are precomputed (see Section 7.2):

Algorithm 14:
begin1

for each human template: do2

for each rigid mesh LOD: do3

for each appearance set: do4

for each virtual human id: do5

get the corresponding body6

update the animation time (between 0.0 and 1.0)7

end8

end9

end10

end11

end12

Note that we do not iterate over all LOD slots, since we are only concerned
with the rigid meshes. Once again, the sorting achieved in the LOD Selection
stage ensures that we are exclusively iterating over rigid meshes, without
cumbersome tests.

Finally, for the impostors, since a keyframe of an impostor animation is
only represented by two texture atlases, no specific deformation needs to
be achieved. However, we assign the animator a special job: to update a
new list of virtual human ids, specifically sorted to suit a fast rendering of
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impostors. Indeed, at initialization, and for each human template, a special
list of virtual human ids is created, sorted by appearance set, impostor ani-
mation, and keyframe. The first task achieved by the Animator is to reset the
impostor specific list in order to refill it accordingly to the current state of the
simulation. Then, to refill this list, an iteration is performed over the current
up-to-date list, the one sorted by human template, LOD, and appearance set
(updated in the LOD Selection stage):

Algorithm 15:
begin1

for each human template: do2

get its impostor animations3

for the only impostor LOD: do4

for each appearance set AS: do5

for each virtual human id: do6

get the corresponding body7

update the animation time (between 0.0 and 1.0)8

get body’s current impostor animation id a9

get body’s current impostor keyframe id k10

put virtual human id in special11

list[AS ][a ][k ]12

end13

end14

end15

end16

end17

In this way, the impostor specific list is updated every time the data pass
through the Animator stage, and is thus ready to be exploited at the next
stage, the Renderer.

The Renderer represents the phase where draw calls are issued to the GPU
to display the crowd. Rendering shadows is a two-pass algorithm, and achieved
in this stage: first, deformable and rigid meshes are sequentially rendered from
the point of view of the sun, i.e., the main directional light. Then, they are
consecutively rendered from the point of view of the camera. To diminish state
change overhead, the number of draw calls is minimized, thanks to our slots
of visible humans sorted by human template, LOD, and appearance set. In
the following pseudo-code, we show the second pass in the deformable mesh
rendering process.

This second pass is preceded by another pass, used to compute the
shadows. Note that in this first pass, the process is quite similar, although
data useless for shadow computation are not sent, e.g., normal and texture
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Algorithm 16:
begin1

for each human template: do2

for each deformable mesh LOD: do3

bind vertex, normal, and texture buffer4

send to the GPU the joint ids influencing each vertex5

send to the GPU their corresponding weights6

for each appearance set: do7

send to the GPU texture specular parameters8

bind texture and segmentation maps9

for each virtual human id: do10

get the corresponding body11

send the joint orientations from cache12

send the joint translations from cache13

end14

end15

end16

end17

end18

parameters. In this rendering phase, one can see the full power of the sorted
lists: all the instances of the same deformable mesh have the same vertices,
normals, and texture coordinates, Thus, these coordinates need to be bound
only once per deformable mesh LOD. The same applies for the appearance
sets: even though they are used by several virtual humans, each one needs to
be sent only once to the GPU. Note that each joint transformation is sent to
the GPU as two vectors of four floating points, retrieved from the cache filled
in the Animation phase.

For the rigid meshes, the process is quite different, since all the vertex
deformations have been achieved in a preprocessing step. We develop here the
second pass in pseudo-code.

In the rendering phase of the rigid meshes, only the texture coordinates
and indices can be bound at the LOD level, in opposition to the deformable
meshes, where all mesh data are bound at this level. The reason is obvious:
for a deformable mesh, all the components representing its mesh information
(vertices, normals, etc.) are the same for all instances. It is only later, on the
GPU, that the mesh is deformed to fit the skeleton posture of each individual.
For a rigid mesh, its texture coordinates, along with its indices (to access the
buffers), remain the same for all of their instances. However, since the vertices
and normals are displaced in a preprocess and stored in the keyframes of a
rigid animation, it is only at the individual level, where we know the animation
played, that their binding can be achieved. Note that since the vertices sent to
the GPU are already deformed, there is no specific work to be achieved in the
vertex shader. Concerning the shadow computation phase, i.e., the first pass,
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Algorithm 17:
begin1

for each human template: do2

for the only rigid mesh LOD: do3

bind texture coordinate buffer4

bind indices buffer5

for each appearance set: do6

send to the GPU texture specular parameters7

bind texture and segmentation maps8

for each virtual human id: do9

get the corresponding body10

get the correct rigid animation keyframe11

bind its vertex and normal buffer12

end13

end14

end15

end16

end17

the pseudo-code is the same, but without sending useless data, like normal
and texture information.

Rendering impostors is fast, thanks to the virtual human id list sorted
by human template, appearance set, animation, and keyframe, that is up-
dated at the Animation phase. Here follows the corresponding pseudo-
code.

The Path Planner is performing the collision avoidance between virtual
humans. It is at the Simulator stage that subgoals are set several frames
ahead, and that the followed directions are interpolated by steering methods.
The Path Planner cares only for collision avoidance, and runs at a lower
frequency than the other presented stages. Note that we put this stage and
the next one, the Behavior, after the Renderer, because the GPU is rendering
in parallel. So, instead of waiting for the frame to finish being rendered, we
concurrently use the CPU.

The Behavior is the phase exploiting the slots of virtual humans reaching
new navigation graph vertices. All along the entire pipeline, virtual humans
cannot change their current animation or steering, because it would invalidate
our various sorted slots. This last stage is thus the only one which is allowed
to change the steering and current animation sequence of virtual humans.
It is always achieved at the end of the pipeline, one frame ahead. Basically,
each time a character is entering a new graph vertex (detected at the Sim-
ulator phase), we apply a probability to change the steering and/or anima-
tion. For instance, a character entering a new vertex with a walk animation
clip has a probability to start playing another animation sequence, e.g., an
idle one.
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Algorithm 18:
begin1

for each human template: do2

get its impostor animations3

for each appearance set: do4

bind texture and segmentation maps5

for each impostor animation: do6

for each keyframe: do7

bind normal map8

bind UV map9

for each virtual human id: do10

get the corresponding body11

get the correct point of view12

send to GPU texture coordinates where to get the13

correct virtual human posture and point of view

end14

end15

end16

end17

end18

end19

7.4 Motion Kits

7.4.1 Data Structure

We introduce three levels of representation for the virtual humans: the de-
formable meshes, the rigid meshes, and the impostors. When playing an an-
imation sequence, a virtual human is treated differently depending on its
current distance and eccentricity to the camera, i.e., the current level of de-
tail it uses. For clarity purpose, we recall giving an animation clip a different
name depending on which level of detail it applies to (see Section 7.2). An
animation clip intended for a deformable mesh is a skeletal animation, one for
a rigid mesh is a rigid animation, and an animation clip for an impostor is an
impostor animation.

We have already shown that the main advantage of using less detailed
representations is the speed of rendering. However, for the memory, the cost of
storing an animation sequence for a deformable, a rigid mesh, or an impostor is
growing (see Table 7.1). From this, it is obvious that the number of animation
sequences stored must be limited for the less detailed representations. It is also
true that we want to keep as many skeletal animation clips as possible for the
deformable meshes, first, because their storage requirement is reasonable, and
second, for variety purpose. Indeed, deformable meshes are at the forefront,
close to the camera, and several virtual humans playing the same animation
clip are immediately noticed.
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The issue arising then is the switching from a level of representation to
another. For instance, what should happen if a deformable mesh performing
a walk cycle reaches the limit at which it switches to the rigid mesh represen-
tation? If a rigid animation with the same walk cycle (same speed) has been
precomputed, switching is done smoothly. However, if the only rigid animation
available is a fast run cycle, the virtual human will “pop” from a representa-
tion to the other, greatly disturbing the user. We therefore need each skeletal
animation to be linked to a reassembling rigid animation, and similarly to an
impostor animation. For this reason, we need a motion kit data structure. A
motion kit holds several items:

• A name, identifying what sort of animation it represents, e.g., walk 1.5ms,
• Its duration,
• Its type, determined by four identifiers: action, subaction, left arm action,

and right arm action,
• A link to a skeletal animation,
• A link to a rigid animation,
• A link to an impostor animation.

Each virtual human knows only the current motion kit it uses. Then, at
the Animator stage, depending on the distance of the virtual human to the
camera, the correct animation clip is used. Note that there is always a 1:1
relation between the motion kits and the skeletal animations, i.e., a motion
kit is useless if there is not an exact corresponding skeletal animation. As
for the rigid and impostor animations, their number is much smaller than for
skeletal animations, and thus, several motion kits may point to the same rigid
or impostor animation. For instance, imagine a virtual human using a motion
kit representing a walk cycle at 1.7 m/s. The motion kit has the exact skeletal
animation needed for a deformable mesh (same speed). If the virtual human
is a rigid mesh, the motion kit may point to a rigid animation at 1.5 m/s,
which is the closest one available. And finally, the motion kit also points to
the impostor animation with the closest speed. The presented data structure
is very useful to easily pass from a representation to another. In Figure 7.6, we
show a schema representing a motion kit and its links to different animation
clips. All the motion kits and the animations are stored in a database, along
with the links joining them (see Section 7.5).

One may wonder what the four identifiers are for. They are used as cate-
gories to sort the motion kits. With such a classification, it is easy to randomly
choose a motion kit for a virtual human, given certain constraints. First, the
action type describes the general kind of movement represented by the motion
kit. It is defined as either:

• stand: for all animations where the virtual human is standing on its feet,
• sit: for all animations where the virtual human is sitting,
• walk: for all walk cycles, or
• run: for all run cycles.
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Fig. 7.6. Example of motion kit structure. In the center, a motion kit with its links
identifying the corresponding animations to use for all human templates. On the
left, a virtual human instantiated from a human template point to the motion kit it
currently uses.

The second identifier is the subaction type, which more restrains the kind
of activity of the motion kit. Its list is nonexhaustive, but it contains descrip-
tors such as talk, dance, idle, etc. We have also added a special subaction
called none, which is used when a motion kit does not fit in any of the other
subaction types. Let us note that some action/subaction couples are likely to
contain no motion kit at all. For instance, a motion kit categorized as a sit
action and a dance subaction is not likely to exist. The third and fourth iden-
tifiers: left and right arm actions are used to add some specific animation to
the arms of the virtual humans. For instance, a virtual human can walk with
the left hand in its pocket and the right hand holding a cell phone. For now,
we have three categories that are common to both identifiers: none, pocket,
and cell phone. However, this list can be extended to other possible arm ac-
tions, such as holding an umbrella, pulling a caster suitcase, or scratching
one’s head.

When one needs a varied crowd, it is simple for each virtual human to ask
randomly for one of all the motion kits available. If the need is more specific,
like a crowd following a path, it is easy to choose only the adequate walk/run
motion kits, thanks to the identifiers.

7.4.2 Architecture

In our architecture, the motion kits are stored in a four-dimensional table:
Table [action id] [subaction id] [left arm action id] [right arm

action id]
For each combination of the four identifiers, a list of motion kits corre-

sponding to the given criteria is stored . As previously mentioned, not all
combinations are possible, and thus, some lists are empty. In Figure 7.7, a
virtual human is playing a skeletal animation, linked to a motion kit with the
following identifiers: walk, none, cell phone, pocket.
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Fig. 7.7. A virtual human using a motion kit with identifiers: walk, none, cell phone,
pocket.

In our architecture, an animation (whatever its level of detail) is dependent
on the human template playing it: for a deformable mesh, a skeletal animation
sequence specifies how its skeleton is moved, which causes the vertices of
the mesh to get deformed on the GPU. Since each human template has its
own skeleton, it is impossible to share such an animation with other human
templates. Indeed, it is easy to imagine the difference there is between a child
and an adult skeleton. For a rigid animation, it is the already deformed vertices
and normals that are sent to the GPU, thus such an animation is specific to
a mesh, and can only be performed by a virtual human having this particular
set of vertices, i.e., issued from the same human template. Finally, an impostor
animation clip is stored as a sequence of pictures of the virtual human. It is
possible to modify the texture and color used for the instances of the same
human template, but it seems obvious that such animation pictures cannot
be shared by different human templates. This specificity is reflected in our
architecture, where three lists of skeletal, rigid, and impostor animations are
stored for each human template.



7.5 Database Management 169

It follows that each motion kit should also be human template-dependent,
since it has a physical link to the corresponding animation triplet. However,
this way of managing the data is far from optimal, because usually, an anima-
tion (whatever its level of detail) is always available for all the existing human
templates. It means that, for instance, if a template possesses an animation
imitating a monkey, all other human templates are likely to have it. Thus,
making the information contained in a motion kit human template-dependent
would be redundant. We introduce two simple rules that allow us to keep a
motion kit independent from a human template:

1. For any motion kit, all human templates have the corresponding anima-
tions.

2. For all animations of all human templates, there is a corresponding motion
kit.

We now explain how, thanks to these assertions, we can keep a motion
kit independent from the human templates and still know to which animation
triplet it should link. First, note that each human template contains among
other things:

• the list of skeletal animations,
• the list of rigid animations,
• the list of impostor animations.

Now, following the two rules mentioned above, all human templates contain
the same number of skeletal animations, the same number of rigid animations,
and the same number of impostor animations. If we manage to sort similarly
these animation lists for all human templates, we can link the motion kits with
them by using their index in the lists. We show a simple example in Figure 7.6,
where a structure representing the human templates is depicted: each human
template contains a list of skeletal, rigid, and impostor animations. On the left
of the image, a motion kit is represented, with all its parameters. In particular,
it possesses three links that indicate where the corresponding animations can
be found for all human templates. These links are represented with arrows in
the figure, but in reality, they are simply indices that can be used to index
each of the three animation lists for all human templates.

With this technique, we are able to treat all motion kits independently
from the human templates using them. The only constraint is to respect rules
(1) and (2).

7.5 Database Management

As detailed in Chapter 4 we use the locomotion engine described by Glardon
et al. [GBT04] to generate varied locomotion cycles. Although this engine
is fast enough to generate a walk or run cycle in real time, it cannot keep
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up that rhythm with thousands of virtual humans. When this problem first
occurred, the idea of precomputing a series of locomotion cycles and storing
them in a database came up. Since then, this system has proved very useful
for storing other unchanging data. The main tables that can be found in the
database are the following:

• Skeletal animations,
• Rigid animations,
• Impostor animations,
• Motion kits,
• Human templates, and
• Accessories.

In this section, we detail the advantages and drawbacks of using such a
database, and what kind of information we can safely store there.

As previously mentioned, all the skeletal, rigid and impostor animations
can neither be generated online, nor at the initialization phase of the appli-
cation, because the user would have to wait during an important amount of
time. This is why the database is used. With it, the only work that needs to be
done at initialization is to load the animations, so that they are ready when
needed at runtime. Although this loading phase may look time-consuming, it
is quite fast, since all the animation data are serialized into a binary format.
Within the database, the animation tables have four important fields1: unique
id, motion kit id, template id, and serialized data. For each animation entry
A, its motion kit id is later used to create the necessary links (see previous
section), while its template id is needed to find to which human template A
belongs. It also allows one to restrain the number of animations to load to
the strict minimum, i.e., only those needed for the human templates used in
the application. It is mainly the serialized data that allow distinguishing a
skeletal from a rigid or an impostor animation. For a skeletal animation, we
mainly serialize all the information concerning the orientation of each joint
for each keyframe. With a rigid animation, for each keyframe, a set of already
deformed vertices and normals are saved. Finally, for an impostor animation,
two series of images of the human template are kept (the normal and the UV
map) for several keyframes and points of view.

Another table in the database is used to store the motion kits. It is impor-
tant to note that since they are mainly composed of simple data, like integers
and strings (see Section 7.4), they are not serialized in the database. Instead,
each of their elements is introduced as a specific field: unique id, name, dura-
tion, speed, four identifiers (action id, subaction id, left arm action id, right
arm action id), and two special motion kit ids (rigid motion kit id, impostor

1 By field, understand a column in the database that allows for table requests with
conditions.
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motion kit id). When loading a motion kit M from the database, its basic
information, i.e., speed, name, etc., is directly extracted to be saved in our
application. Each of the two special motion kit ids is an index referring to an-
other motion kit. This reference is necessary to complete the linking between
M and its corresponding rigid and impostor animations.

We have introduced in the database a table in order to store unchanging
data on the human templates. Indeed, we have some human templates already
designed and ready to be used in the crowd application. This table has the
following fields: unique id, name, skeleton hierarchy, and skeleton posture.
The skeleton hierarchy is a string summarizing the skeleton features, i.e., all
the joint names, ids, and parent. When loading a human template, this string
is used to create its skeleton hierarchy. The skeleton posture is a string giving
the default posture of a skeleton: with the previous field, the joints and their
parents are identified, but they are not placed. In this specific field, we get
for each joint its default position and orientation, relative to its parent. As
one can notice, for now the human template table is incomplete, e.g., the
appearance sets are missing, and no information is serialized, similarly to the
motion kits. This is mainly due to a lack of time (indeed, as of today, the
crowd application is still being developed). But it is certainly an advantage to
further fill this table with more data in a binary format, so that the loading
of human templates is faster at initialization.

Finally, the database possesses two tables dedicated to accessories. Let
us recall that an accessory is a mesh used to add variety and believability
to the appearance of the virtual humans. For instance, it can be a hat, a
pair of glasses, a bag, etc. In the first table, we store the elements specific
to an accessory, independently from the human template wearing it: unique
id, name, type, serialized data. In the serialized data is stored all the ver-
tices, normal and texture information to make an accessory displayable. The
second table is necessary to share information between the accessories and
the human templates. The displacement of a specific accessory relative to a
joint is different for each human template. This displacement is stored as a
matrix. So, in this second table, we employ a field template id and a field
accessory id to know exactly where the field matrix must be used. Thus, for
each accessory/human template couple, corresponds an entry within this ta-
ble. Note that we also store there the joint to which the accessory needs to
be attached. This is because in some special cases, they may differ from a
skeleton to another. For instance, when we attach a backpack to a child tem-
plate, the joint used is a vertebra that is lower than the one for an adult
template.

Using a database to store serialized information has proven to be very
useful, because it greatly accelerates the initialization time of the application.
The main problem is its size, which increases each time a new element is
introduced into it. However, with real-time constraints, we allow ourselves to
have a sufficiently large database to obtain varied crowds, within reasonable
limits.
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7.6 Shadows

Illumination ambiances are set from three directional lights, whose direction
and diffuse and ambient colors are prealably (or interactively) defined by the
designer. The light coming from the sun is the only one provoking shadows.
As we lack a real-time global illumination system, the two other lights are
present to provide enough freedom for the designer to give a realistic look
to the scene. This configuration has given us satisfaction as we mainly work
on outdoor scenes. See the top-left and bottom-left panels of Figure 7.5 for
results.

Virtual humans cast shadows on the environment and, reciprocally, the
environment casts shadows on them. This is achieved using a shadow mapping
algorithm [Wil78] implemented on the GPU. At each frame, virtual humans
are rendered twice:

• The first pass is from the directional light view perspective, i.e., the sun.
The resulting z-buffer values are stored in the shadow map.

• The second pass is from the camera view perspective. Each pixel is trans-
formed into light perspective space and its z value is compared with the
one stored in the shadow map. Thus, it is possible to know if the current
pixel is in shadow or not.

So, we need to render twice the number of virtual humans really present.
Though with modern graphics hardware, rendering to a z-only framebuffer is
twice as fast as rendering to a complete framebuffer, one expects a certain drop
in the frame rate. Moreover, standard shadow mapping suffers from important
aliasing artifacts located at shadow borders. Indeed, the resolution of the
shadow map is finite, and the bigger the scene, the more aliasing artifacts
appear. To alleviate this limitation, different strategies are used:

• Dynamically constrain the shadow map resolution to visible characters,
and

• Combine percentage closer filtering [RSC78] with stochastic sampling
[Coo86], to obtain fake soft shadows [Ura06].

We now further describe how to dynamically constrain the shadow map
resolution to visible characters. A directional light, as its name indicates,
is defined only by a direction. Rendering from a directional light implies
using an orthographic projection, i.e., its frustum is a box, as depicted in
Figure 7.8(top).

An axis-aligned bounding box (AABB) is a box whose faces have normals
that coincide with the basis axes [AMH02]. They are very compact to store;
only its two extreme points are necessary to determine the whole box. AABB
are often used as bounding volumes, e.g., in a first pass of a collision detection
algorithm, to efficiently eliminate simple cases.

A directional light necessarily has an orthographic frustum aligned along
its own axes. So, we can consider this frustum as an AABB. The idea is, at
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Fig. 7.8. Shadowed scene with apparent directional light frustum.

each frame, to compute the box englobing all the visible virtual humans, so
that it is as tight as possible. Indeed, using an AABB as small as possible
allows one to have a less stretched shadow map. At each frame, we compute
this AABB in a four-step algorithm:

1. The crowd AABB is computed in world coordinates, using visible navi-
gation graph vertices. By default, the AABB height is set to 2 meters, in
order to bound the characters at their full height.

2. The light space axes are defined, based on the light normalized direction
Lz:

Lx = normalize((0, 1, 0)T )Lz (7.3)

Ly = normalize(LLx
z ) (7.4)

3. The directional light coordinate system is defined as the 3×3 matrix Ml =
[Lx, Ly, Lz].

4. The eight points composing the AABB (in world coordinates) are multi-
plied by M−1

l , i.e., the transpose of Ml. This operation expresses these
points in our light coordinate system.
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Note that remultiplying the obtained points by Ml would express the crowd
AABB back into world coordinates. In Figure 7.8(bottom) are illustrated the
shadows obtained with this algorithm.

7.7 Some Results

In this chapter, we presented the different necessary steps to create and ex-
ploit a fast architecture for simulating crowds. We first showed the interest
of using several representations, i.e., deformable meshes, rigid meshes, and
impostors. Then, we fully detailed each step of our pipeline for fast animation
and rendering of thousands of virtual humans. Through the use of motion kits,
we allowed for switching smoothly from a representation to another, without
disturbing animation popping artifacts. We exposed how a database can be
exploited to store all unchanging data, and finally, we introduced a shadow
map algorithm adapted to crowds.

We now expose the results achieved with this architecture. Table 7.1 pro-
vides the various storage requirements as a function of the animation types.
In Figures 7.9–7.13, we compare the frame rates obtained in two cases: first,
when sorted virtual human lists are exploited, and second, when the Ani-
mator and Renderer stages do not use sorted lists, but directly each virtual
human, one after another, in no specific order. With such a process, all the
information needed by the GPU has to be sent for each virtual human, inde-
pendently from the data that may be shared by several of them. As one can
observe in Figures 7.9–7.13, when using highly detailed deformable meshes,
the results obtained with or without sorted lists are almost similar. This can

Fig. 7.9. Frames per second obtained for highly detailed deformable meshes.
The red lines show the results obtained when working with sorted lists, the green
ones with a naive approach. The stars indicate the results for 30 frames per second.



7.7 Some Results 175

Fig. 7.10. Frames per second obtained for simple deformable meshes.

Fig. 7.11. Frames per second obtained for rigid meshes.

be explained by the communications sent from the CPU to the GPU (joint
transmission): such transmissions imply a pipeline flush for each rendered vir-
tual human, thus becoming the bottleneck of the application. However, when
less detailed representations are exploited, the advantage of sorting the lists
becomes clear. A few images directly obtained from our running architec-
ture are shown in Figure 7.5 on the top left and bottom left. In Figure 7.5
on the top right, one can observe the distance at which the virtual humans
switch to lower representations: in red are the rigid meshes, and in green the
impostors.
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Fig. 7.12. Frames per second obtained for impostors.

Fig. 7.13. Conditions under which the tests have been achieved: five human tem-
plates, steering and animation enabled, no shadows, no accessories, no collision
avoidance.

7.8 Final Remarks

In this chapter we focused on aspects of real-time crowd simulation, discussing
attributes such as the quantity of agents that could be rendered, the quality
of resulting rendering, the efficiency of methods concerning crowd data, and
the versatility and adaptation of methods.
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Populated Environments

8.1 Introduction

The construction of huge and complex urban environments useful for real-
time virtual human simulations has been regarded to be a major endeavor.
The main challenges arise in the modeling, management, and visualization of
large amounts of data and compound semantically rich environments so as to
perform real-time crowd simulation.

The modeling of realistic populated environments requires the acquisition
and processing of different sources of data, and design of complex systems to
create a terrain to describe geographic relief, landing algorithms to subdivide
regions into lots, and fulfill these lots with buildings, houses, parks, lakes,
or other different city artifacts. Besides, a realistic virtual human simulation
requires a powerful data structure to store and retrieve data efficiently. It is
desirable to tackle collision avoidance and detection, finding the shortest path
between two interest points and so on. The huge amount of objects impose
restrictions on real-time rendering and visualization, requiring development
techniques to process these tasks efficiently.

Traditional methods for modeling virtual cities based on manual re-
construction have provided high-quality results, but require an enormous
amount of time and operator expertise. In the context of automatic or
semiautomatic methods for generating virtual cities, two main approaches
have been distinguished: reconstruction [For99, DEC03, TSSS03] and para-
metric [PM01,YBH∗02,dSM06] based methods.

The first category looks for virtual remake real environments, which re-
quires different sources of data, since global information is provided by aerial
photos and 2D maps, including local information of building geometry, and
appearance (texture) is provided by photography and laser profiler data. Re-
construction techniques are used in cultural heritage projects to recover archi-
tectural information of historically important places [ZKB∗01,DEC03]. This
type of application is concerned with architectural aspects and high fidelity
in the reproduction of real environments.
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Parametric methods are not necessarily concerned with the reproduction
of the real world, but normally they intend to construct cities according to
population aspects. For example, Parish and Müller [PM01] have used socio-
statistical and geographical information to construct virtual cities. However,
the major part of these works does not deal with virtual human simulation in
generated environments, consequently they do not treat some specific prob-
lems. For instance, virtual people should evolve in the virtual environment,
being able to enter the buildings from the sidewalks, walk in parks and pedes-
trian zones, perceive the semantics of the environment, and behave in a way
similar to real life.

Another proposal to fill in this gap provides tools for automatic city gener-
ation and virtual human simulation [dSM06]. As a consequence, a framework
where different levels of details about the environment have been provided,
e.g., city maps, pictures, textures, and shape of buildings, can be useful to
generate a realistic virtual representation. On the other hand, if the user just
knows information about the population distribution in the space and a map
of the real city, the framework can also generate a virtual city with less com-
promise with real life. In addition, in every case, the virtual city can be easily
populated by virtual humans, from sociostatistical data and constraints.

The simulation of virtual humans has been discussed in the context of
complex and structured environments. However, the city construction is not
sufficient for virtual human simulation, as semantic information is needed
to perform realistic virtual human simulation. Some of these environments
have been created with semantic information to allow their exploration by
realistic virtual humans [FBT99], and cars [TD00]. A navigation technique
has been developed over structured environment with representation scheme,
path planning, and collision avoidance components [LD04].

Concerning complex environment design, some authors have proposed the
use of pattern systems to make uniform building constructions [AIS77], and
theories to explain the complexity of large spaces, such as urban environ-
ments [Hil96]. The latter takes into account pedestrian flow and human be-
havior in virtual environments. Recent works concentrate on methods for
automatic modeling of architecture, with distinction for Instant Architec-
ture [WWSR03].

Other research groups have concentrated their efforts to achieve real-
time simulation and visualization optimization [TC00,DHOO05a]. When large
amounts of data must be managed, processed, and, more importantly, ren-
dered and displayed in real time, some techniques are required to achieve this
objective.

8.2 Terrain Modeling

Terrain modeling has become integral to virtual city modeling as land-use
planning and engineering. A terrain can be defined as the surface features of
an area of land. For computational purposes it is required to define a precise
mathematical model.
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Definition 8.1. A real terrain can be described by a continuous function
f : �2 → �, z = f(x, y), where x,y are plane coordinates and z rep-
resents correspondent elevation values. Thus, the terrain model can be de-
fined by triangulated function of f : H(f) = {(x, y, f)}, as illustrated in
Figure 8.1.

The computer processing of square-grid arrays of terrain heights, digi-
tal elevation models (DEMs), has revolutionized the discipline’s two chief
functions of topographic analysis and display. Geographic information system
(GIS) technology further enables terrain-modeling results to be combined with
nontopographic data. A digital terrain model should be stored and managed
in a compact way. The digital terrain is laid out in a grid of vertices with a
fixed distance between, with 2n + 1 vertices in width and depth, and n > 1.
If vertices are equally spaced, the mesh has 2n quadrilaterals with 2 triangles
in each one.

In Figure 8.2, terrain elevations are extracted from a grayscale image (a),
where each pixel value represents terrain elevation. The texture images con-
tribute to terrain appearance. Two different textures have been used to give
realistic terrain appearance: common terrain texture (b) is used to give a gen-
eral appearance of terrain, and a noisy texture (c), which is a small image
bump-mapped, is used to give realism to the generated terrain (d).

The terrain mesh [dBSvKO00] is obtained by the triangulation of ter-
rain elevations. For instance, data models can easily provide elevation value
z for any (x, y) valid pair. In general, other system components can retrieve

Fig. 8.1. A terrain mesh.
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Fig. 8.2. Terrain extraction from 2D images and texture.

information from terrain. Then, virtual human component uses this informa-
tion for virtual human animation on the relief, while city simulation uses it
for building placement.

De Floriani and Magillo deal with the problem of modeling large-size
terrain [DFM02]. They perform a comparison between two multiresolution
terrain models, based on regular and irregular grids. This problem affects
directly memory usage, and rendering and visualization processing, because
level-of-detail algorithms are implemented through fast storage and retrieval
of information about terrain and its appearance, too.

8.2.1 Plants and Lakes

Different approaches have been considered to generate realistic model of
plants, with special attention to L-systems and to visual representation
through graphic impostors. The basic idea about L-systems is to define com-
plex objects by successively replacing parts of a simple object using a set of
rewriting rules or productions [PHMH95]. This approach produces very real-
istic plant architectures. However, when real-time simulation is required, the
most common approach is based on impostor, i.e., image-based representation
(impostor) are used instead of complex geometric models.

A third approach combines geometric detailed and impostor representation
rendering techniques to support interactive frame rate in high visual qual-
ity [DHOO05a]. Artifacts close to the camera are represented by 3D mod-
els, for example, modeled through L-systems, whereas distant artifacts are
swapped by their image-based representations. Boulanger et al. [BPB06] pro-
pose a new method to the rendering of realistic grass fields in real time with
dynamic lighting, shadows, antialiasing, animation and density management.
It uses per-pixel lighting, grass density maps, and three levels of detail: ge-
ometry, vertical, and horizontal slices, with smooth transitions between them.
They claim worst-case 20 fps, common-case 80 fps or better on an NVidia
7800 GTX.

and rendering realistic water is one of the most difficult and time-consuming
tasks in computer graphics. it requires a correct illumination as will as an
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accurate water surface deformation model [PA00]. Interactive techniques for
physics-based simulation and realistic rendering of rivers using Smoothed Par-
ticle Hydrodynamics have been developed by Kipfer and Westermann [KW06].
They describe the design and implementation of a grid-less data structure to
efficiently determine particles in close proximity and to resolve particle colli-
sions. Besides, an efficient method to extract and display the fluid free surface
from elongated particle structures as they are generated in particle-based fluid
simulation is presented. The implementation of surface extraction can be re-
alized on the GPU, saving simulation time.

8.2.2 Sky and Clouds

The sky modeling adds more realism to city modeling, mainly when com-
bined with clouds and meteorological phenomena, through different rendering
schemes. As in plants and lakes modeling, creating realistic sky and clouds is a
huge task and demands heavy computational power. Schpok et al. [SSEH03]
have developed an interactive system to model, animate, and render visually
volumetric clouds using graphics hardware. It is recommended to be used in
interactive systems or exported for higher quality offline rendering. However,
it is restricted to real-time systems due its low performance.

A method for fast simulation of cloud dynamics on graphics hardware
promises to be applicable in real-time simulations without sacrificing inter-
activity [HBSL03]. Clouds are modeled using partial differential equations
that model fluid flow, water condensation and evaporation. An optimized im-
plementation using programmable floating point fragment processors is per-
formed on the GPU.

For virtual human simulation, sky and clouds modeling are useful for
achieving high-quality visual scenes. However, methods for simulating these
natural phenomena are time-consuming and spend a large amount of mem-
ory and CPU. Instead, “fake” models fulfill all requirements to achieve visual
quality under real-time constraints. Nowadays procedural approaches have
been considered for generating water, clouds, fire, and other natural phenom-
ena [EMP∗02]. Besides, implementations of these techniques on the GPUs
make them very attractive.

8.3 Informed Environment

Populated environments must offer assistance to virtual human walk, avoiding
obstacles, and access to services distributed through the city. This requires
that environments offer necessary semantic information for virtual human
decision-making to achieve these basic actions. This kind of environment is
called Informed Environment, see [FBT99]. Some of these semantically rich
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environments allow their exploration by realistic virtual humans [FBT99], and
cars [TD00] during simulations. A navigation technique has been developed
over structured environments with representation scheme, path planning, and
collision avoidance components [LD04]. Ontology-based methods have been
successful employed on Informed Environments [PVM05].

The method for creating the Informed Environment proposed by Farenc
et al. [FBT99] provides information for the recognition of places, location, and
exploration of interesting objects. The method is based on environment de-
composition, linked to geographic information, and hierarchically stored. The
environment entities composed by different kinds of objects are represented
by graphical objects with semantic information associated. The Informed En-
vironment is compounded by these entities and allows different levels of sim-
ulations.

The management of this scene is achieved by subdividing the scene into
some structured regions. These regions can be subdivided into subregions
or grouped, depending on the level of information required. Each level has
pertinent information. Object naming scheme allows one to associate the in-
formation to an object, requiring the designer to assign a name to each type
of object, e.g., street, block, junction, sidewalk, and so on.

Ontologies are explicit specifications of concepts related to a knowledge
domain. Their use allows interoperability among different systems and they
can help the integration of different aspects in various kinds of simulation
systems. In this case, it is a powerful tool for describing the environment and
the crowd to be simulated, allowing the specification of the activity of urban
environments to be done in a semantically organized way.

This means that the organization of the data is clear to the user and it
can be easily adapted and expanded. Figure 8.3 presents the basic model.
Tables 8.1 to 8.4 show the main attributes for some of the components of the
environment.

Below we give an overview of the model, its main components, attributes
defined in parentheses ( ) and subclasses in brackets [ ]:

Agent (has profile)
A specific profile is assigned to each agent.

Fig. 8.3. Environment ontology.
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Profile (fixed destination, random destination)
[employed and unemployed adult, child, dependent]

Each profile will define their main activities, which correspond to their
usual (fixed) and eventual (random) destinations at certain times in the en-
vironment.

Place (has name, has capacity, has dimension, has schedule of functioning)
[leisure, house, commerce, church, workplace]

Place refers to the agent destination according to their profiles. Places have
capacity (number of allowed agents), and relations with schedule and dimen-
sion, the classes listed below.

Schedule (opening time, closing time, time of permanence, entering inter-
val)

Dimension (coordinates X, Y, size)

Table 8.1. Profile properties

Name String

Identifier Integer

Fixed Destination Instance Place

Random Destination Instance* Place

Table 8.2. Schedule properties

Opening time String

Closing time String

Average time of permanence String

Entering time interval String

Table 8.3. Dimension properties

X Integer

Y Integer

Dimension-X Integer

Dimension-Y Integer

Table 8.4. Place properties

Name String

Capacity Integer

Identifier Integer

Has Dimension Instance Dimension

Has schedule of functioning Instance* Schedules
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On the basis of this model, the activity of the population of the environ-
ment is defined. Children, for instance, will have as their fixed destination
the school at a certain time with a determined time of permanence; at other
times, they have random destinations in the environment. Besides children,
the current model includes employed adults with fixed and random destina-
tion, unemployed adults with random destinations only, and dependents that
only move when accompanied by an adult. By modeling the environment on
the basis of this model we can generate a simulation that reflects more re-
alistically the population activity in the environment. However, to achieve
fast retrieval of information, we have structured different abstraction data
into different levels, through a multilevel data model. Then, only required
information is processed during the simulation.

8.3.1 Data Model

An important requirement in city modeling is the ability to access, render, an-
imate, and display huge sets of heterogeneous geometric objects and allowing
insertion of semantic information. A multilevel representation scheme to ad-
dress theses challenges has been developed [dSM06]. All framework input data
and spatial models retrieved from repositories are tackled in different levels
of abstraction. Figure 8.4 illustrates the data model into different levels.

The relationship between different levels allows information to be retrieved
and efficiently used, with low overhead. Each level provides information for
upper level and allows to access lower levels. For instance, virtual humans
and buildings need information about terrain and topo mesh, which must be
retrieved in levels 0 and 1, respectively.

The terrain is represented by a triangulated planar mesh in level-0. It
is described by geometry and attributes (textures) (see Section 8.2). Level-1
stores the topo mesh representation (see Section 8.3.2). For example, each
vertex of topo mesh retrieves its geometric elevation value into the lower level
(terrain).

The topo mesh (level-1) represents a coarse grain division of the city, where
edges abstract streets and sidewalks, bounded by vertices which represent
street crossings and faces the blocks. Then, each entity in level-1 is refined
in level-2. For instance, each edge (level-1) points to a mesh (level-2), which
describes sidewalks and streets (including appearance attributes). Vertices
into level-1 points to a mesh (level-2), which describe street crossing and
traffic sign information. Faces in level-1 point to a list of polygons (level-2),
which represent lots, generated through the allotment algorithm (Section 8.5).
A block without allotment has a null pointer, i.e., no references to upper
level.

Level-3 holds the spatial objects imported from repositories, as build-
ings, human models, sign plates, plants, cars, and others. The position and
orientation of these objects are given in lower level (level-1 and level-2, re-
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Fig. 8.4. Data model into levels 0, 1, 2, and 3.

spectively). For instance, each lot defines building orientation, making its exit
to the sidewalk direction.

This hierarchical structure allows to achieve efficient visualization of city
and queries for simulation. Each level can provide a proper representation
for rendering, with geometry and appearance attributes (mainly textures) of
stored objects. In addition, scene nodes are encoded with levels-of-detail capa-
bilities (details in Section 8.7). Besides, path planning algorithms can improve
the running time of any shortest path, by performing a coarse query in level-1,
and finally refining it into level-2. Finally, the selection of spatial objects has
improved significantly the computational time during the rendering process,
because objects stored in one level can be processed without interference of
objects in another level.

Level-2

Level-1

Level-0

Level-3
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8.3.2 Topo Mesh

The amount of information processed, stored, rendered, and visualized in a
huge populated virtual city is enormous. Polygon meshes usually employ a
list of unrelated polygons, which are described by a list of vertices and a list
of faces. The vertices represent street corners, faces the blocks, and edges the
borders between two blocks. However, more information is required in order
to simulate the virtual population. For instance, if a virtual human needs to
move from one place to another, information about the (best or shortest) path
to be followed is required.

This operation is time-consuming if the system only provides a list of
polygons. A planar-embedding polygonal mesh, constructed by preprocessing
the polygon list, helps to solve the path query problems because it creates and
maintains adjacency relationship among polygons. This structure is called a
planar topological mesh (or topo mesh), and it represents the first level in
the multilevel data model. Details about the data model are presented in
Section 8.3.1, where levels are also described.

Definition 8.2. Topological mesh (topo mesh) is a combinatorial struc-
ture embedded in an �2 plane. It supplies the ability to maintain subdivisions
of the plane induced by collections of curves. In this case, these curves are
straight segments, bounded by a pair of vertices. The mesh subdivides the plane
into interconnected vertices, edges, and faces.

The topo mesh is a half-edge-like data structure [Wei85]. It stores half-
edges instead of edges. A half-edge is a direct edge, useful to capture the face
orientation. This structure is convenient for modeling convex or nonconvex
orientable 2D manifolds, as illustrated in Figure 8.5.

Each face is bounded by circular linked list of half-edges. The list can
be oriented either clockwise or counterclockwise around the face. Once an
orientation has been chosen, it must be maintained to all remaining faces in
the mesh. Each half-edge in a list has a pointer to the next half-edge, the
endpoint vertex, a face, and its pair (oppositely oriented adjacent half-edge).
Each vertex holds its position in �3, and has a pointer to half-edge. Finally,
each face has a pointer to one half-edge. The most adjacent queries are stored
directly in the data structure primitives. For instance, an adjacent face is
obtained when the common half-edge is found, its twin (opposite direction)
and getting corresponding face. A half-edge or list of half-edges bordering one
face is retrieved by a circular query around the face.

For our purpose, vertices, edges, and faces represent corners, streets, and
blocks of a city, respectively. Half-edges codify street directions. The data
structure maintains adjacency relationshipbetween city elements, which allows
one to implement queries efficiently, such as: which blocks use a corner? which
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Face1 Face2

HE1b

HE1a V1

HE2a

V0

Fig. 8.5. Data structure diagram: biggest arrows represent half-edges and smallest
ones represent pointers in data structure.

streets bound a block? etc. Shortest path algorithms can be implemented
efficiently through this data structure.

The topo mesh can be given, for example, by image segmentation com-
bined with other image processing techniques, such as image quantization and
labeling, as well as corners detection. Such processes identify and extract a
list of simple polygons from 2D maps and images. Figure 8.6 illustrates the
complete process.

A quantization is performed into the color image (map) to give a binary
image. If maps contain street names, they are removed by morphological fil-
tering. Streets and blocks are shown in different levels, then the image is
labeled to identify connected components, and the algorithm SUSAN is ap-
plied to identified corners and edges of each block [SB97]. As a result, a list
of polygons, representing blocks of the city, is obtained.

This hierarchical model has been designed to support addition of user-
defined semantic information, required for crowd simulations. Each entity in
different levels provides one hotspot, which defines one template to receive
this data structure. Then, at runtime data can be introduced and retrieved
in an efficient way, making simulation more flexible and semantically rich.
Ontologies have been aggregated in some simulations of normal life and panic
(see next sections).
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Fig. 8.6. An extraction of simple polygons from 2D maps.

8.4 Building Modeling

Traditional methods for building modeling are based on manual design to
construct new buildings or to reconstruct existing ones. They have provided
high-quality results, but require an enormous amount of time and operator
expertise. Recent works concentrate on methods for automatic modeling of
architecture, with distinction for Instant Architecture [WWSR03]. Completely
automatic approaches have succeeded in generating completely fictitious cities
with low or medium realism.

Another approach provides a framework where different levels of details
about the environment can be provided, e.g., city maps, pictures, textures,
and shape of buildings can be useful to generate a realistic virtual represen-
tation. On the other hand, if the user just has information about the pop-
ulation distribution in the space and a map of the real city, the framework
can also generate a virtual city with less compromise with real life. This kind
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of framework makes the building construction process more flexible, because
some repetitive tasks can be performed in an automatic way, while details to
achieve high visual quality to buildings can be performed through a manual
process.

Concerning complex environment design, particularly building modeling,
some authors have proposed the use of pattern systems to make uniform
building constructions [AIS77], and theories to explain the complexity of large
spaces, such as urban environments [Hil96]. The latter takes into account
pedestrian flow and human behavior in virtual environments. These works
supply information to chosen building modeling process.

8.5 Landing Algorithms

An interesting problem in city modeling is the automatic generation of lots.
We present a solution that includes blocks subdivision, according to their
boundary description, zone information, and population density. These pa-
rameters determine also the minimum and average area threshold as stop
criterion, which can be provided textually. A very important constraint is
concerned with the avoidance of creating lots without access to the street.

In fact, from the computational geometry point of view, we have a poly-
gon partitioning problem with a set of restrictions. Considering block edges
as input and average area as stop condition, we have a relatively simple parti-
tioning problem. However, it can be a complex problem once we want to avoid
internal, malformed, and too small polygons. We have made three assumptions
in the proposed algorithm:

• Any polygon of partitioning must have at least one (or piece of) edge of
original polygon boundary;

• Too small polygons are marked as not useful to build up; and
• Polygons with at least twice the area of specified threshold are reparti-

tioned.

The first assumption is made so that all lots will be accessible from the
street. It is reached by verifying if one of two split edges belongs to the orig-
inal polygon or else if new polygons have edges from the original one. The
second assumption aims to avoid undesirable size of polygons, i.e., it avoids
construction in small areas, while the third assumption avoids too big ones.
The pseudo-code of this algorithm is presented in Algorithm 19.

This algorithm returns a list of subdivided simple polygons (or the original
polygon if it cannot be subdivided according to specified constraints). The
partitioning algorithm is generic for simple polygons, and not restricted to
convex ones. After the allotment process, the buildings can be inserted into
the lots. Figure 8.7 shows the result of allotment algorithm.
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Algorithm 19: Polygon partitioning
Input: (Polygon P, AverageArea AA)
Output: List of subdivided polygons
inlist ← P // current list of polygon
outlist ← void // output list of polygon
for all poly in inlist do

bedge ← polyḃiggest−edge
v1 ← subdivide bedge at midpoint
line← trace perpendicular straight line
vlist← intersect (poly, line)
vlist← lexisort(vlist)
v2 ← internal−visible (vlist.prev(v1 or vlist.next(v1)))
pedge← make−edge(poly,v1,v2)
polygon1 ← partition(poly,v1,v2)
polygon2 ← partition(poly,v2,v1)
if (polygon1.area() < AA) && (!polygon1.isisland()) then

outlist← polygon1

else
inlist← polygon1

end if
if (polygon2.area() < AA) && (!polygon2.isisland()) then

outlist← polygon2

else
inlist← polygon2

end if
end for
return outlist

(a) (b)

Fig. 8.7. Automatic allotment: (a) before and (b) after.
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We have implemented a variation of this algorithm, first partitioning
polygons into convex subpolygons, then applying Algorithm 19. The con-
vex partitioning is performed throughoptimal Greene Algorithm [Gre83] or
an approximation of Hertel and Mehlhorn [HM83]. These preprocessings can
be interesting when convex lots are required.

8.6 Ontology-Based Simulation

This section describes a virtual environment, which uses high level knowledge
and reasoning capabilities, using ontology-based VR simulations. The agents
could have different behaviors, since they can reason based on the knowledge
they have about the world where they are inserted.

The VR environments that make use of knowledge representation mod-
els (e.g., ontology, informed environments) [FBT99,PVM05] to describe the
agents (e.g., emotional states, personality, personal profile) and the environ-
ment (e.g., special places, functioning rules, place profile) allow us to obtain
more complex and interesting behaviors in a multiagent system (MAS). It is
important to preserve the agents’ individuality, in order to increase the sim-
ulation realism, but at the same time we need to manage complex scenarios
composed of a great number of agents. In a complex MAS environment, the
use of knowledge and automatic reasoning tools can make it possible to control
and generate complex collective and individual behaviors.

For example, we can add information about the environment describing the
opening hours of a store, or the security measures related to some flammable
liquids (e.g., do not smoke near these objects, or create sparks). On the other
hand, the agents can also use this knowledge, so they are able to decide where
to go and how to act. In the above example, depending on whether the store is
now open or closed, the agent will change his actions according to the present
status of the environment (change the present destination), or also, if the agent
wants to avoid some danger and needs to go to a place where flammable liquids
are kept, the first action to be executed should be to extinguish his cigarette.
This example explains some possible applications of the high-level reasoning,
when associated with an informed VR environment.

In the next section we describe an example of application that makes
use of an ontology-based VR simulation: Crowd Simulation in Normal Life
Situations.

8.6.1 Using Ontology for Crowd Simulation in Normal
Life Situations

Research on behavioral modeling has mainly focused on aspects of virtual
human control in order to realistically populate virtual environments (VEs).
Well known applications that require virtual populations are games devel-
opment and simulation of urban environments. Some of the work in the
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area [MT01,BMB03,BdSM04] has focused on crowd simulation during haz-
ardous events. Another approach is to deal with “normal behavior” of vir-
tual people that occurs before such events in different moments of normal
life. The goal of this section is to present UEM—An Urban Environment
Model [PVM05], where knowledge and semantical information needed to re-
alistically populate VEs are described by using an ontology that is associated
with space and time of simulation, functionalities and normal occupation of
space, etc. This is a novel approach through which a large number of virtual
humans can populate an urban space by considering normal life situations.
Using this model, semantical data is included in the virtual space considering
normal life actions according to different agent profiles distributed in time
and space, such as children going to school and adults going to work at usual
times. Leisure and shopping activities are also considered. Agent profiles and
their actions are also described using UEM.

Previous work has presented different ways of controlling virtual humans
in order to improve their ability to evolve in an autonomous way in a VE. In
such work, the main goal is to remove part of the complexity regarding some
complex tasks processed by the agent and to transfer this information to the
VE. As a consequence, a virtual agent can “ask” to the VE the position of
a specific place, the best way to go to a location, the semantical information
included into a place or a path, or other needed information to provide the
agents’ evolution in the VE.

In UEM, the agents are created on the basis of an ontology, which includes
information of population profiles as well as information about the urban
environment, in a way the knowledge about the general model of the VE
can be represented and used as a basis for the simulation. People (virtual
agents) can be created based on statistical data, if available, but also, fictitious
information can be used. Agents move and behave in urban life according
to the schedule that is related to their usual activities, as described in the
ontologies. In this way, people move during “normal life” in a more realistic
way, without a “random aspect,” which is common in the major part of related
work. For instance, at 10:00 AM, if a user wants to check what is happening in
school, he or she will be able to see the students inside the school. Why is this
similarity to normal life important in a simulation? For crowd simulation in
panic situations, the location and the activity people are engaged in when the
hazardous event occurs are very decisive in determining the perception and
response of people. By considering this aspect, the simulation can be much
more realistic. For example, the action response of people during the day or
night can be different, and it can be simulated if we are able to model the
normal life of people.

Besides presenting the details of the model, we present its integration
into a crowd simulator whose main goal is to provide realistic and coherent
population behavior in urban environments. The results show that urban en-
vironments can be populated in a more realistic way by using UEM, escaping
from the usual impression we have in such a system that virtual people are
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walking in a random way by predefined paths in the virtual space. In the
sequence, we describe the ontology associated with the VE.

8.6.2 Applying Ontology to VR Environment

This section describes a practical implementation of a VR simulation tool that
uses ontology for crowd simulation in normal life situations. Figure 8.8 shows
an overview of the framework.

8.6.3 The Prototype of UEM

UEM defines the ontology of the VE and the population configuration. The
input information is processed in real time and provides information to be
visualized in 2D, as shown in Figure 8.8. Moreover, generated data are exp-
orted in a proprietary format as input to Player, which is a 3D viewer based on
Cal3D library.1 Player includes visualization of animated 3D lifelike humans.

Figure 8.9 shows a screenshot of the simulator, and 2D visualization. We
can see on the bottom left of the image the time to be simulated (7:00 AM).
At this time, the majority of agents are at home. People will then begin to
apply their activities, as defined in the ontologies.

In Figure 8.10 we can see agents on the street, populating the environment.
Figures 8.11 and 8.12 illustrate the 3D visualization.

For this simulation, we considered São José, a village located in the Brazil-
ian state of Rio Grande do Norte. The village has around 600 inhabitants, and
its main locations are two churches, a sports gymnasium (leisure), one school,
three stores (commerce), and one industrial plant (workplace) in which 200

Fig. 8.8. Overview of the framework.

1 http://cal3d.sourceforge.net
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Fig. 8.9. At 7:00 AM, people are at home.

Fig. 8.10. At 7:25 AM, people populate the VR environment.

people work. This village was chosen due to the availability of information as
it has been used as a case study for a system in a related project concerned
with panic situations, PetroSim, which is briefly described below and fully
presented in [BdSM04]. PetroSim was designed to help safety engineers to
evaluate and improve safety plans and to help the training of people living in
regions near dangerous installations (the village of São José is located near
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Fig. 8.11. The 3D viewer.

petroleum extraction installations). The simulation considers different agent
psychological profiles (dependent, leader, or normal) and their behavior in
danger situations.

Fig. 8.12. The 3D viewer.

8.6.4 Simulation Results

For the simulation on the basis of UEM, the user determines the distribu-
tion of profiles and people in the houses, and the environment is populated
at random. The people move in the environment and they stay for a deter-
mined time interval in the places where their presence is required (obligatory)
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according to their profile (children at school, etc.). The movement is guided
by the A*algorithm (general search algorithm that is used to solve planning
problems).

If the agent fails to reach its place at the regular time, it does not stay
and goes back home or any other nonobligatory place. Agents go home after
10 PM. Locations of some places defined in the ontology are represented in
Figure 8.13.

The other images show the evolution of a specific simulation containing 250
people by using UEM. In Figure 8.14, at 11:29 AM, one can observe students
and employed adults at school and work locations, respectively. Figure 8.15
shows the time students leave school and go home.

The following graphs describe the spatial occupation of agents in São José
Village, according to the simulation undertaken on the basis of our model.
It is observed that employed adults (Figure 8.16) spent more time at work,
going to school after 7:00 PM (19:00) or adopting other behaviors (going to
home, commerce, etc.).

Students (Figure 8.18) stay at school until 12:00 AM, and then they adopt
random behavior going to all possible places. After 10:00 PM (22:00) they are
at home. On the other hand, unemployed adults stay mainly at home, but
populate other places too, as shown in Figure 8.17.

Fig. 8.13. Locations of places.
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Fig. 8.14. At 11:29 AM, students and employed adults are in school and work,
respectively. We can observe some other people on the street.

Fig. 8.15. At 12:05 PM, students leave school and go to their home or other places,
as considered in the ontology.

The system allows user interaction during the simulation. The interactivity
is given by the visualization of the graph, the description of ontology into
the space, verification of profiles, etc. It is also possible to change specific
place characteristics during the simulation, consequently changing the spatial
occupation.
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Fig. 8.16. Spatial occupation of employed adults.

Fig. 8.17. Spatial occupation of unemployed adults.

Fig. 8.18. Spatial occupation of students.
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8.7 Real-Time Rendering and Visualization

The large amount of processed, rendered, and visualized data requires mech-
anisms to achieve performance for real-time simulation. For example, it must
support frustum culling, occlusion culling, continuous (CLOD) and discrete
(DLOD) levels of detail. A scenegraph can store scene objects in nodes which
support levels of detail management, being CLOD for terrain and DLOD
for other objects (like buildings, trees, and others), respectively. These city
objects, except terrain and building, have been represented by impostors in
different resolutions. They are switched at runtime according to proximity to
camera.

Terrain LOD can performed by a LOD algorithm, as ChunkedLOD [Ulr05].
It is a view-dependent algorithm to aggregate primitives, achieving low CPU
overhead and high triangle throughput. It requires a heavy preprocessing stage
to generate high-detail meshes (chunks), stored in a tree structure. The chunk
at the root of the tree is a low-detail representation, higher detail being added
at leaves direction. When chunks are close to the camera, child nodes are
reached and rendered. When chunks are far from the camera, parent nodes
are selected to be rendered.

Low-resolution impostors are loaded and rendered when they are far from
the camera, and they are changed by high-resolution version when they are
close to (threshold) the camera. Only visible objects are rendered and dis-
played, while entities out of frustum are not considered (paged off to disk).
Indeed, the entire scene can be saved into a database for further simulation.

8.8 Implementation Aspects

Some libraries and toolkits can support the development of city generation,
useful for crowd simulation. One framework has been designed and imple-
mented to support fast prototyping of these applications [dSM06]. The code
has been written in C++ language. It is designed with support of OpenSteer,
Cal3D, OpenSceneGraph, and GDAL. The OpenSteer2 library is the natural
choice for steering behaviors, while the Cal3D library was chosen to produce
the virtual character animation. An intermediate layer between Cal3D and
steering was created due to the fact that the Cal3D library does not deal
with the movement of the characters in the virtual world, but only with body
animation. This layer controls automatically the animation of one character
(movement of legs and arms) due to the trajectories processed in the Open-
Steer library at each frame. To each animation keyframe, the displacement of
the character from the previous position is computed and then the body an-
imation is updated. For visualization, OpenSceneGraph3 has been employed.

2 http://opensteer.sourceforge.net
3 http://www.openscenegraph.org

http://opensteer.sourceforge.net
http://www.openscenegraph.org
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Its synergy with Cal3D and GDAL4 makes the visualization of animated hu-
man and geometric data of city relief easier.

8.9 Final Remarks

This chapter describes techniques employed to generate populated environ-
ments, useful for virtual human simulation, in particular real-time parametric
generation of 3D virtual cities for behavioral simulations. We have focused on
automatic and semiautomatic methods for city generation useful for crowd
simulation, and real-time visualization. Hierarchical data structure gives sup-
port to fast management of heterogeneous and large amounts of data. Some
tips about free software libraries to support human animation, behavior ani-
mation, and high-performance rendering are discussed.

4 http://www.gdal.org

http://www.gdal.org
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Applications: Case Studies

9.1 Introduction

This chapter presents some applications that have dealt with virtual crowds.
We are concerned with three applications. First, crowd simulation in the con-
text of virtual heritage is considered. Second, we describe an interface built to
guide crowds in real time. Finally, some examples of virtual crowds in safety
systems are presented.

9.2 Crowd Simulation for Virtual Heritage

Virtual heritage reconstructions usually focus on creating visual representa-
tions of monuments or buildings, such as cathedrals, with virtual humans play-
ing only a minor role. Usually there is a single “tour guide” [DeL99,FLKB01],
or virtual humans are more artifacts than living beings such as Xian terra-
cotta warriors [MTPM97,ZZ99] or Egyptian mummies [ABF∗99].

In the real world, however, most of the reconstructed places are, or have
been, populated by smaller or larger numbers of people—worshippers prayed
in cathedrals, druids performed their ceremonies in Stonehenge, gladiators
battled in the Colosseum in front of spectator crowds.

Although early virtual heritage works have been criticized for their lack of
visual realism [Add00], nowadays advances in computer hardware and sophis-
ticated 3D modeling packages allow one to create compelling visualizations of
static objects. Yet, while photorealistic architecture reconstructions can be
impressive, most of the times they lack dynamic elements such as virtual
humans or animals.

In this section, we will study several cases of crowds in ancient times.
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9.2.1 Virtual Population of Worshippers Performing Morning
Namaz Prayer inside a Virtual Mosque

In this section, we aim to increase the realism of the reconstructed edifices by
re-creating life inside architectural models. This work was done in the con-
text of the CAHRISMA project, which aims to create Hybrid Architectural
Heritage, where not only visual, but also acoustical aspects of the heritage
are reconstructed. We integrated a virtual crowd simulation [UT01] into a
real-time photorealistic simulation of complex heritage edifices [PLFMT01].
We simulate a crowd of virtual humans able to move and interact within a
virtual environment. We created a virtual population of worshippers perform-
ing morning Namaz prayer inside a virtual mosque (see Figure 9.1). We used
a rule behavior system allowing flexible representation of a complex scenario
relatively easily adaptable to different edifices or different numbers of persons.

System Design

The crowd simulation was built as a part of the VHD++ development frame-
work [PPM∗03]. The VHD++ framework provides components, which allow,
for example, loading and displaying of VRML models, animating H-Anim
compatible humanoid models, or 3D sound playback. The application is con-
structed as a particular set of these software components, working on a par-
ticular set of data.

The crowd component is responsible for the generation of behaviors of vir-
tual humans. It allows one to initialize a population of virtual human agents

Fig. 9.1. Crowd performing praying in the Sokullu mosque.
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and then generates in real time sequences of actions, such as playing of a pre-
recorded body or facial animation keyframed sequence, walking to a particular
location using walking motion model, or playing a sound.

The behavior of the agents is computed by a combination of rules and
finite state machines: on the higher level, rules select behaviors appropriate
for the state of the simulation; and on the lower level, finite state machines
generate sequences of actions. The state of the agent is constituted by an
arbitrary number of attributes. Events provide a means of communication
between agents, perception of the environment, and interaction with objects
and the user. An important part of the system is a model of the environ-
ment containing, for example, semantic information about the space, such as
location of doors, or areas accessible for walking and praying. More detailed
description of the employed behavior model can be found in [UT02].

The crowd module allows construction of scenarios defined by a set of
behavioral rules, such as a crowd of worshippers coming to the mosque and
performing the religious ceremony.

Scenario Creation

In this case study, the goal was to enhance the realism of reconstructed Sinan
mosques by adding realistic animated virtual humans to architectural models.
The scenario of a morning Namaz prayer was selected as a representation of
a typical activity taking place in simulated mosques.

The reconstruction of the scenario was based on video and audio recordings
of the actual ceremony. As the first step, a structured transcription of the
ritual was created, serving as a further guide for the creation of behavioral
rules and the selection of motion sequences and sound clips to be recorded.

VRML models of virtual humans have been created with the 3D Studio
Max modeling package using a custom plug-in for creating H-Anim compatible
hierarchies. As there is a fixed number of polygons possible to be displayed
for a particular frame update rate, the polygon count was the constraining
factor for creation of human models. The fixed number of polygons had to be
divided between the model of the scene and the models of the humans. Human
models of different complexities were chosen with more complex ones, with
around 3000 polygons, for persons with specific roles in the ceremony, such as
imam or muezzin, and less complex ones, with around 1000 polygons, for the
rest of worshippers. The higher polygon count of “more significant” human
models is mainly due to the higher complexity of their facial area, as these
models have roles requiring them to perform facial animations. Sounds have
been extracted from the audio recording of the ceremony, and corresponding
FAP facial animations have been created.

Motion sequences of various parts of the ceremony have been produced
by a motion capture of a person performing Namaz prayer. For a convincing
scenario, crowds should not look too uniform as to motion: a higher level of
variety is needed as explained in Chapter 3. Because it would not be feasible
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to record all motions for every human, a single motion captured animation
clip was reused for multiple virtual humans, and the illusion of variety was
created by a rule system.

The rule system has two main roles: first, it is responsible for orchestration
of the scenario; and second, it helps with creating the variety by generating
slightly different commands for the different agents, even while they are exe-
cuting the same set of rules. Tools for achieving variety are: differences in the
durations of the actions; slightly shifted starts of the actions; and the selection
of the animations corresponding to the particular action randomly from a set
of similar animations. Most rules are shared by all the agents; some agents
with specific roles, such as imam or muezzin, have additional, role-specific,
rules. Sharing a significant number of rules by many agents proved to be im-
portant for the development and manageability of the simulation, as eventual
changes in the scenario did not have to be propagated to many places in the
rule set, leaving less space for errors and speeding up the development.

Behavioral rules in conjunction with the model of the environment provide
a flexible way of representing complex behaviors. One of the requirements of
the CAHRISMA project was that several mosques would be reconstructed.
Each mosque, however, is different, with a different size and a different layout
of the building. Thus, even while on the higher level of description, the scenario
of a morning Namaz is the same for each mosque, lower-level details, such as
the exact location and exact timing of the actions, are different.

To construct these multiple similar scenarios by a linear script would re-
quire unnecessary repetitive work prone to errors. The rule system has the
advantage over the simpler script of specifying behavior on the level of logi-
cal units instead of absolute actions with absolute timings. For example, the
synchronization of worshippers performing different steps of the praying se-
quence (as required by the ceremony) is done by interagent communication via
events. Each person is announcing the end of the current step; a designated
leader then observes when everybody finishes the current step, and gives a
command to proceed with the next one. Such representation of the behavior
is independent of the number of involved persons, or a particular length of
the animation clip.

Further flexibility comes from the use of the environmental model: the
rules operate on semantic information about the scene rather than on absolute
coordinates of the locations. For example, one of the rules states that before
starting praying, the agent has to pass through the door of the mosque, and
then to arrive to the area designated for praying (see Figure 9.2). This rule is
equally valid for any of the mosques, as the model of the environment supplies
the correct absolute coordinates of the door and the praying place.

9.2.2 Virtual Roman Audience in the Aphrodisias Odeon

In this section, we will discuss the system implementation and data design
necessary for creating a crowd of virtual actors in the Roman Odeon of
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Fig. 9.2. Crowd enters Sokullu mosque.

Aphrodisias. We use the techniques described in Chapter 3 to create a crowd
that is varied in animation and appearance using a few template actors while
having large variety means we reduce the work of designers. Using scenario
scripts we bring life to the audience which is following a play on stage. The
work was realized as part of the EU project ERATO—identification Evalua-
tion and Revival of the Acoustical heritage of ancient Theaters and Odea.

We summarize a method that creates a believable crowd of digital actors
listening to a play on stage. With the transition to programmable graphics
hardware even on laptops the system is able to run a crowd with smooth
animations and transitional updates in real time.

Crowd Engine Resume

The crowd engine used for this application has been described in Chapter 7. It
renders at least 1000 digital actors in real time. It is responsible for updating
the animation and for rendering the spectators. The input needed per tem-
plate is two or three meshes with decreasing level of detail, and four or more
different textures that have different clothing styles and color key areas de-
scribed in their alpha channels [dHCSMT05,dHSMT05]. Given these data the
crowd engine can start rendering the humans, but still we need scripting and
scenarios as well as audio to make the experience complete. In collaboration
with the Danish Technical University (DTU), EPFL VRlab defined camera
placements for audio recordings that have the characteristics of that specific
listening location. This process is called auralization, described in [NRC04],
and relies on a sound wave ray tracing.
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Variety comes through textures and modifiable color areas. These areas
are defined by the artist in each texture for each color area such as the dress,
jewels, and hair. Each of these areas can then be modified individually and
their color ranges are described in an HSB space as detailed in Chapter 3. Ex-
amples of this variety can be seen in Figure 9.3, where there are four different
templates visible: two for the patricians and noblemen. The nobles have four
textures per template and the patricians have eight and using the color variety
on each such texture we get a greater effect of variety. This means we work
very little on creating variety and spend more time on scenario authoring and
tuning.

To be able to have smooth animation transitioning and updates we have
all animation clips stored as quaternions and interpolate the key frames us-
ing spherical linear interpolation for each individual in the crowd for each
animation that is active. To further smooth the interpolation when tran-
sitioning we use a cosine function to weight which animation clip is more
important.

With the use of programmable graphics hardware we deform the mesh in
the vertex shader and light it with Phong shading and apply the color variety
at fragment level. This was already described in Chapter 7.

Fig. 9.3. Audience applauding the entrance of the senator.
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High-Fidelity Actors

The high level of variety in a crowd reenforces the believability and reliability
of the simulation. The crowd engine can render up to 1000 virtual characters
including the odeon environment with interactive frame rates. To emphasize
the importance of special characters, the system is extended for rendering
and animating virtual characters using different code paths. Based on re-
quirements, we can use a fast and low resource usage path or a more detailed
path for more realistic rendering. When rendering a crowd simulation, it is
impossible to give as much detail and attention to every virtual character,
than with systems that are displaying only a few characters at the same time.

Experience has shown that if the crowd can use basic behaviors with a
good sensation of presence, special characters that attract the attention of
end-users need to be more detailed. Thus, special characters, such as senators,
have their own alternate code path. They shared the same DNA in terms of
functionalities than the lighter model. High-fidelity actors represent virtual
characters that have an influence on the scenario. From a content creation
point of view, designers are allowed to increase the complexity by creating
more detailed 3D meshes or by taking advantage of more advanced vertex and
fragment shaders. From an animation perspective, the high-fidelity actors need
to be compliant with the H-Anim 1.1 standard.1 This opens to a wide range of
additional techniques including the benefit of extending the animation bank
with hundreds of motion capture clips and inverse kinematics as featured in
Figure 9.4.

Scenario Authoring

Since the beginning of the project, the focus has always been on creating a
graphical pipeline that could be applied to many different scenarios and cul-
tural heritage settings. The goals were to overcome the development costs
involved in creating unique individual characters. We come to a solution pro-
moting variety, code, and content reuse by allowing to prototype quickly dif-
ferent scenarios, through the use of customizable meshes, textures, colorings,
behaviors, and scenarios. Using the techniques described in Chapter 3, differ-
ent digital actor templates were developed that cover different social classes as
depicted in Figure 9.5. Variety in colors and clothes were based on information
collected by archaeologists.

Audience Placement

An important part of a scenario is the distribution of the audience in the
odeon. A plan of the distribution was created according to historical sources.

1 http://www.h-anim.org
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Fig. 9.4. A senator (high-fidelity actor) making his entrance in the odeon.

Fig. 9.5. The different social classes represented in our simulation. Note the differ-
ence in color range for clothes.
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Fig. 9.6. Left: 2D distribution plan. Right: audience distributed in odeon.

Figure 9.6 shows on the left side the plan of the audience distribution accord-
ing to social class—starting from the center there are places for nobles, patri-
cians, and plebeians. On the right side of the figure is the distribution of 3D
humans in the actual model of the Aphrodisias odeon according to the plan.

In order to facilitate positioning of digital actors, we created a grid of valid
positions in the theater following the distribution of the seats. Then, we used
the creation brush [UdHCT04] with the restriction of operating only on this
grid, instead of free picking. Using the grid, humans can be positioned without
regard to collisions, for example, if two humans happen to materialize very
close to each other. The correct position and orientation of the audience is
thus automatic. The same scene will have a certain expected behavior when
you interact with it, in much the same way a in a paint program, where pixel
positions are placed in a grid.

9.3 Crowdbrush

The idea of Crowdbrush [UdHCT04] is simple: the designer manipulates vir-
tual tools, working in a 2D screen space, with a mouse and a keyboard. These
tools then affect the corresponding objects in a 3D world space, as shown in
Figure 9.7. Different tools have different visualizations and produce different
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Fig. 9.7. Crowdbrush used on the Roman crowd of the Aprhrodisias Odeon.

effects on the scene including creation and deletion of crowd members, modi-
fying their appearances, triggering of various animations, or setting high-level
behavioral parameters.

Briefly, experiments were made with a fully 3D interface, where tools ex-
isted in a 3D world space. Nevertheless, it appeared to be not very practical,
at least not when using standard input devices operating in 2D as a mouse
or a trackball. The usability of a 3D interface could be improved with some
truly 3D input devices such as a spaceball, a 3D mouse, or magnetic sensors.
However, it would limit the number of potential users as such devices are not
common.

Figure 9.8 shows an overview of the system design. The user controls the
application using a mouse and a keyboard. The mouse moves the visual repre-
sentation of the brush tool (an icon of a spray can is used) on the screen, with
the mouse buttons triggering different actions. The keyboard selects differ-
ent tools and switches between “navigate” and “paint” modes. In the “navi-
gate” mode, the mouse controls position and orientation of the camera. In the
“paint” mode, the camera control is suspended and different areas on screen
are selected depending on triggered actions. These areas are then further
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Fig. 9.8. Overview of the system design.

processed by the brush according to their particular configurations, explained
in the next section.

9.3.1 Brushes

Brushes are tools with a visual representation that affect crowd members in
different manners. For example, a brush can create new individuals in the
scene, or it can change their appearances or behaviors. Selected visualizations
of brushes intuitively hint at their specific function. For example, the creation
brush has an icon of a human, the orientation brush has an icon of a compass,
the deletion brush has an icon of a crossed over human, and so on, as in
Figure 9.9.

A brush is processed in three stages. First, a selection of the affected area in
2D screen space is performed according to a triggered action, with subsequent
picking of entities in the 3D world space. Then, the operator modifies the
manner of execution of the brush in the selected area. Finally, the brush
changes the values of the modifiers for the affected individuals, or in the case
of the creation brush, new population members are created.

1. Selections are defined in screenspace. A selection can be a single point
at the location of a cursor, or an area around a cursor. If the selection
is a single point, picking in the 3D world is performed by computing the
intersection of a line segment with the scene. If the selection is an area,
picking is performed on a random sample of points from that area, follow-
ing a “spray” metaphor. The size of the selected area in world space,
changes with the level of zoom into the 3D scene. This provides an
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Fig. 9.9. Laughter Crowdbrush used on the Roman crowd of the Aphrodisias Odeon.

intuitive control of focus: if one wants to work on a large part of the
crowd, zoom-out of the 3D view is performed; if focus is on a smaller
group or individual, zoom-in is performed.

2. Operators define how selections are affected. For example, a stroke of
the creation brush with the random operator creates a random mix of
entities (see Figure 9.10); a stroke of the uniform color brush sets colors
of affected individuals to the same value, as shown in Figure 9.11.

3. Modificators are nonsharable properties, giving uniqueness to every in-
dividual of the crowd. Modifiers encapsulate low-level features influencing
both appearance and animations of virtual humans. Spatial configuration
is qualified by modificators of position and orientation. Appearance is in-
fluenced by modifiers of color, texture, material, and scale. Execution of
actions is determined by animation selection, shift, and speed modifiers.
High-level features can use a combination of several low-level features ac-
cessed through their modifiers. For example, a particular emotional state
sets animations from a predefined set with some specific speed, or cloth-
ing style selects a set of appropriate textures and colors for different body
parts.
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Table 9.1. Sequence and user interactions of a complete scenario

Part Description User con-

trol

Interface 3.2.1 Ac-

tion

3.2.2 Elements

1.0 Intro-

duction

(sequence)

Audience idle

- > senators

entering,

. . . sit - >

people stand

up and salute

- > when

sequence is

over, go to

Part 2.0

> pre-

defined

camera

animation

= no inter-

face

Script (trig-

ger at the

same time):

- Senators

entering

+ crowd

reacting -

synchro-

nized sound

(clapping) -

synchronized

camera path

# scenarioPart1.0.py #

Part1.0 intro.wav # er-

atoVP intro.path = all

synchronized (duration

50sec)

2.0 Selec-

tion (inter-

active loop)

User chooses

what he

wants to see

Audience idle

= loop

> control

the camera

- choose

cameras

> choose

simulation

> quit

= 4 but-

tons (1 per

camera) =

3 - theater

play = >

go to 3.1 -

music = >

go to 3.2 -

spray = >

go to 4.0

= 1 button

(x)

- Switch

to selected

camera &

corresp.

sound (cur-

rent time)

- Switch to

selected sce-

nario&sound

(start time),

for current

camera - quit

app.

# scenarioPart2.0.py

# 4 loop sound:

Part2.0 idle*.wav

# 4 cameras: era-

toVP crowd*.path

3.1 The-

ater Play

(sequence)

User hears

actors play-

ing on stage

- > Audience

is reacting

to the play:

- > when

sequence

is over, go

back to 2.0

Idem 2.0 Idem 2.0 Idem 2.0 # scenarioPart3.1.py

# 4 sounds:

Part3.1 CreonCrowd*.wav

4 sounds:

Part3.1 CreonStage*.wav

= synchronized with

script (1min45sec)

# 4 cameras: era-

toVP crowd*.path

3.2 Music

(sequence)

User hears

music played

on stage -

> audience

listening, -

> at the end

applauses

- > when

sequence

is over, go

back to 2.0

Idem 2.0 Idem 2.0 Idem 2.0 # scenarioPart3.2.py

# 4 sounds:

Part3.2 musicCrowd*.wav

4 sounds:

Part3.2 musicStage*.wav

= synchronized with

script (1min02sec)

# 4 cameras: era-

toVP crowd*.path
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Fig. 9.10. Creation brush with random operator.

Fig. 9.11. Color brush with uniform operator.

Scenario Management

To elaborate the different scenarios which can feature more than a few hundred
distinct digital actors, we need to provide tools and scripting capabilities to
unleash the potential for simulation designers. Our system offers different
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levels of interaction for offline and online simulation adjustments. Therefore,
our applications are able to parse scenario configuration files written in the
scripting language Python.2 Most of our use-case scenarios were based on
reconstructing life in ancient theaters. Table 9.1 describes the sequence and
user interactions of a complete scenario.

Scripting

To control the simulation events, our software architecture is responsible for
maintenance, consistent simulation, and interactive scenario states controlled
by Python scripts at runtime. Our system relies on microthreads for spreading
the workflow and script execution over several frames. This offers the ability to
describe complete sequences of events as Python scripts. The following listing
is an extract of a script sequence which affects behaviors of digital actors
dynamically.

In effect, virtual characters are associated with animation banks which
define sets of animations connected to human emotions such as being positive,
negative, laughing, crying. Theses emotions are represented as distinct states
within an HFSM system where states are defined using Lua metatables [Ier03].

Results

To conclude, Figure 9.12 illustrates the different widgets available at run-
time by our system. The application provides different sets of widgets for
end-users and for designers to interact with the crowds in real time. To il-
lustrate the simulation complexity, our most complete use-case scenario uses
around 800 virtual humans, including two high-fidelity actors representing two
Roman senators and eight different humans template. The animation library

Fig. 9.12. On the left is the widget to interact with the scenario allowing are to
choose predefined viewpoints and scenarios. In the middle is the 3D view and on the
right the Python console, where designers can write scripts at runtime.

2 http://www.python.org
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Algorithm 20:
begin1

import time2

#music has started: people listen3

for i in range(len(agents)) do4

agentName = agents[i]simulationService.setCurrentState(agentName5

,“State ListenMStart”)

end6

while time.time()-val < 45 do7

#wait for the completion of the music score.vhdYIELD8

end9

#concert finished: applause10

for i in range(len(agents)) do11

agentName = agents[i]simulationService.setCurrentState(agentName12

,“State PositiveStart”)

end13

while time.time()-val < 57 do14

vhdYIELD #back to idle for i in range(len(agents))15

agentName = agents[i]simulationService.setCurrentState(agentName16

,“State IdleStart”)

end17

end18

is composed of 750 unique animations. All of these assets are directly manip-
ulated by simulation events relying on more than 50 Python scripts similarly
to [PSO∗05].

9.4 Safety Systems

This section aims to present some applications of crowd simulation in safety
systems. Our first example describes an experience performed in a four-stage
building, where we simulated a crowd evacuation, and compared results with
a real simulated evacuation experiment with real people. The main goal was
to validate the simulation and analyze results of the crowd simulator. In such
an experiment the simulator proposed by [BBM05] was used.

Indeed, validating a model like the proposed one in comparison to real
situations is still a considerable challenge. First, there is not much available
data about real-life crowd experiments. Second, there do not exist obvious
criteria that may be cast into a metric and indicate to what degree the sim-
ulator reproduces real data. Nevertheless, we believe that the present model
already has sufficient generality which allows one to calibrate the parameter
sets (future work in progress).

We present in this section a preliminary comparison of our simulations
with a real building evacuation. This drill took place in a four-story building,
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where 191 people were distributed mainly in classrooms on the third floor
and computer labs on the fourth floor. Due to safety questions, the drill was
announced one week before, and people were instructed to abandon the build-
ing at the very moment they heard the global alarm. In this evacuation, we
estimated the number of people in each room in order to reproduce it in sim-
ulations. We filmed the movement of people at several points in the building,
in order to estimate velocities of people, regions of traffic jams, and time of
evacuation.

Before this drill, we reproduced the building structure and the distribution
of people on the simulator. In order to simulate a 3D structure on a 2D
simulator, we planified the stairs and estimated a reduction of velocity of 50%
in such regions. The maximum speed v0

m was set to 1.3 m/s, since people were
instructed to exit calmly. A global alarm system was simulated, so that agents
start evacuating at the same time. Altruism levels A and mobility levels M
were set to 0.95 with a standard deviation of 0.05, since there were no disabled
people in the building and everybody in the building was supposed to know
very well the environment as well as how to evacuate the building. Table
9.2 shows a comparison between measured data of the drill and results of
computer simulation. The criteria used are

A: mean velocity in corridors without traffic jams
B: mean velocity in corridors with traffic jams
C: mean velocity on stairs without traffic jams
D: mean velocity on stairs with traffic jams
E: higher density
F: global evacuation time

The greater difference observed in Table 9.2, although a moderate varia-
tion only, was related to criterion B (mean velocity in corridors with traffic
jams). This difference did not impact the global evacuation time (criterion F).
We explained this difference to be a function of the spatial occupation, which
was different in real and simulated situations. Indeed, in real life, people do
not come as close together as the particles in the simulation, meaning that

Table 9.2. Comparison between measured data on the drill and results of simula-
tion. Velocities are measured in meters/second, densities in people/squared meter,
and times in seconds.

Criterion Measure on Drill Simulation Result

A 1.25 m/s 1.27 m/s

B 0.5 m/s 1.19 m/s

C 0.6 m/s 0.6 m/s

D 0.5 m/s 0.47 m/s

E 2.3 people/m2 2.4 people/m2

F 190 s 192 s
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Fig. 9.13. Images showing the flow of people on the third floor (left), the traffic
jam that occurred (center), and images of simulation (right).

people observe the traffic jam and stop before sticking together. The oppo-
site happens in the simulation. However, this different spatial occupation does
not impact the global results for the simulated scenarios. Anyway, we are cur-
rently working to improve the model in order to imitate the spatial occupation
observed in real life.

Another important observation reproduced with the simulator concerned
the regions where traffic jams occurred. Figure 9.13 shows such regions where
people had to reduce their velocities due to flows coming from several direc-
tions.

From the data of Table 9.2 and images of Figure 9.13 one may conclude
that the simulator achieved satisfactory performance. However, a more pro-
found study considering other real data is planned, especially concerning the
reaction of people to hazard events.

9.5 Final Remarks

Relevant applications can be treated in the context of crowd simulation. This
chapter presented a few examples of crowd simulation dealing with very prac-
tical subjects.
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[FLKB01] Fröhlich T., Lutz B., Kresse W., Behr J.: The virtual cathedral
of siena. Computer Graphik Topics 3 (2001).

[For97] Fortune S. J.: Voronoi diagrams and Delaunay triangulations.
CRC Handbook of Discrete and Computational Geometry (1997),
377–388.

[For99] Forstner W.: 3D-city models: Automatic and semiautomatic ac-
quisition methods. In Photogrammetric Week’ 99 (1999), Fritsch D.,
Spiller R. (Eds.), pp. 291–303.

[FRMS∗99] Farenc N., Raupp Musse S., Schweiss E., Kallmann M., Aune

O., Boulic R., Thalmann D.: A paradigm for controlling virtual
humans in urban environment simulations. Applied Artificial Intel-
ligence Journal - Special Issue on Intelligent Virtual Environments
14, 1 (1999), 69–91.

[Fru87] Fruin J. J.: Pedestrian Planning and Design, rev. ed. Elevator
World, Inc., Educational Services Division, Mobile, AL, USA, 1987.

[FS04] Fraichard T., Scheuer A.: From Reeds and Shepp’s to
continuous-curvature paths. IEEE Transaction on Robotics 6, 20
(2004), 1025–1035.

[FV06] Fuentes L., Velastin S.: People tracking in surveillance appli-
cations. Image and Vision Computing 24, 11 (November 2006),
1165–1171.

[FvdPT01] Faloutsos P., van de Panne, Terzopoulos D.: The virtual
stuntman: Dynamic characters with a repertoire of autonomous mo-
tor skills. Computers and Graphics 25, 6 (2001), 933–953.

[FvdPT01] Faloutsos M., van de Panne, Terzopoulos D.: Composable
controllers for physics-based character animation. In Proceedings of
ACM SIGGRAPH (2001), pp. 251–260.

[GA90] Girard M., Amkraut S.: Eurhythmy: Concept and process.
The Journal of Visualization and Computer Animation 1, 1 (1990),
15–17. Presented at The Electronic Theater at SIGGRAPH ’85.

[GBT04] Glardon P., Boulic R., Thalmann D.: Pca-based walking en-
gine using motion capture data. In Proc. Computer Graphics Inter-
national (2004), pp. 292–298.

[GBT06a] Glardon P., Boulic R., Thalmann D.: Dynamic obstacle clear-
ing for real-time character animation. The Visual Computer 6, 22
(2006), 399–414.

[GBT06b] Glardon P., Boulic R., Thalmann D.: Robust on-line adap-
tive footplant detection and enforcement for locomotion. The Visual
Computer 3, 22 (2006), 194–209.

[GFK03] Grest D., Frahm J.-M., Koch R.: A color similarity measure
for robust shadow removal in real time. In Vision, Modeling and
Visualization (2003), pp. 253–260.

[GG93] Galea E. R., Galparsoro J. M. P.: A brief description of the
exodus evacuation model. Proceedings of the 18th International Con-
ference on Fire Safety (1993).



References 227

[Gil95] Gilbert N.: Simulation: An emergent perspective. In New Tech-
nologies in the Social Sciences (Bournemouth, UK, 1995).

[Gir87] Girard M.: Interactive design of 3-D computer-animated legged an-
imal motion. In Proc. of ACM Symposium on Interactive 3D Graph-
ics (1987), pp. 131–150.

[GKM∗01] Goldenstein S., Karavelas M., Metaxas D., Guibas L.,

Aaron E., Goswami A.: Scalable nonlinear dynamical systems
for agent steering and crowd simulation. Computers & Graphics 25,
6 (2001), 983–998.

[GKMT01] Goto T., Kshirsagar S., Magnenat-Thalmann N.: Automatic
face cloning and animation. IEEE Signal Processing Magazine 18, 3
(2001), 17–25.

[GM85] Girard M., Maciejewski A.: Computational modeling for the
computer animation of legged figures. In Proc. of ACM SIGGRAPH
(1985), pp. 263–270.

[GMHP04] Grochow K., Martin S., Hertzmann A., Popovic Z.: Style-
based inverse kinematics. In Proceedings of ACM SIGGRAPH
(2004).
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